
5

>
D. Megias jimenezA. Albos Raya

AUTHOR: COORDINATOR:

business models of

Economic aspects and

free software

l. bru Martinez

I. Fernandez Monsalve

��������������������� ���

�������������������� ����������������� ������������������

���������������������������������
���������������������������������
����������������������������������
����������������������������������
���������������������������������
����������������������������������
�������������������

���������������������������������
�������������������������������
����������������������������������
�����������������������������������
�������������������������������������
�����������������������������������
����������������������������������
�����������������������������������
������������������������������������
��������������������������������
�����������������������������������
�����������������������������������
����������������������������������
������������������������������������
�����������������������������������
������������������������������������

������������������������

�������������������������������
���������������������������������
����������������������������������
�����������������������������������
���������������������������������
����������������������������������
�������������������������������
����������������������������������
�������������������������������
�������������������������������������
�����������������������

�����������������������������
���
�������������������
�����������������������������
������������������������������������
��������������������
����������������������������
�����������������������
���������������������������

���
���
���
���������������

Software has become a strategic societal resource in the last few decades.
e emergence of Free Software, which has entered in major sectors of
the ICT market, is drastically changing the economics of software
development and usage. Free Software – sometimes also referred to as
“Open Source” or “Libre Software” – can be used, studied, copied,
modified and distributed freely. It offers the freedom to learn and to
teach without engaging in dependencies on any single technology
provider. ese freedoms are considered a fundamental precondition for
sustainable development and an inclusive information society.

Although there is a growing interest in free technologies (Free Software
and Open Standards), still a limited number of people have sufficient
knowledge and expertise in these fields. e FTA attempts to respond to
this demand.

Introduction to the FTA
e Free Technology Academy (FTA) is a joint initiative from several
educational institutes in various countries. It aims to contribute to a
society that permits all users to study, participate and build upon existing
knowledge without restrictions.

What does the FTA offer?
e Academy offers an online master level programme with course
modules about Free Technologies. Learners can choose to enrol in an
individual course or register for the whole programme. Tuition takes
place online in the FTA virtual campus and is performed by teaching
staff from the partner universities. Credits obtained in the FTA
programme are recognised by these universities.

Who is behind the FTA?
e FTA was initiated in 2008 supported by the Life Long Learning
Programme (LLP) of the European Commission, under the coordination
of the Free Knowledge Institute and in partnership with three european
universities: Open Universiteit Nederland (e Netherlands), Universitat
Oberta de Catalunya (Spain) and University of Agder (Norway).

For who is the FTA?
e Free Technology Academy is specially oriented to IT professionals,
educators, students and decision makers.

What about the licensing?
All learning materials used in and developed by the FTA are Open
Educational Resources, published under copyleft free licenses that allow
them to be freely used, modified and redistributed. Similarly, the
software used in the FTA virtual campus is Free Software and is built
upon an Open Standards framework.

Preface

Evolution of this book
e FTA has reused existing course materials from the Universitat
Oberta de Catalunya and that had been developed together with
LibreSoft staff from the Universidad Rey Juan Carlos. In 2008 this book
was translated into English with the help of the SELF (Science,
Education and Learning in Freedom) Project, supported by the
European Commission's Sixth Framework Programme. In 2009, this
material has been improved by the Free Technology Academy.
Additionally the FTA has developed a study guide and learning activities
which are available for learners enrolled in the FTA Campus.

Participation
Users of FTA learning materials are encouraged to provide feedback and
make suggestions for improvement. A specific space for this feedback is
set up on the FTA website. ese inputs will be taken into account for
next versions. Moreover, the FTA welcomes anyone to use and distribute
this material as well as to make new versions and translations.

See for specific and updated information about the book, including
translations and other formats: http://ftacademy.org/materials/fsm/1. For
more information and enrolment in the FTA online course programme,
please visit the Academy's website: http://ftacademy.org/.

I sincerely hope this course book helps you in your personal learning
process and helps you to help others in theirs. I look forward to see you
in the free knowledge and free technology movements!

Happy learning!

Wouter Tebbens
President of the Free Knowledge Institute

Director of the Free technology Academy

Acknowledgenments

e authors wish to thank the Fundació per a la
Universitat Oberta de Catalunya (http://www.uoc.edu)
for financing the first edition of this work under the
framework of the International Master's degree in Free
Software offered by this institution.

e current version of these materials in English has
been extended with the funding of the Free Technology
Academy (FTA) project. e FTA project has been
funded with support from the European Commission
(reference no. 142706- LLP-1-2008-1-NL-ERASMUS-
EVC of the Lifelong Learning Programme). is
publication reflects the views only of the authors, and the
Commission cannot be held responsible for any use
which may be made of the information contained
therein.

��������������������� � ���

������������

��� ����������� ��������� ���� ����������� ��� ���� ������������ ���� ��������

�������� ����������� ������ ��������� ����� �������������������� ���������� ���

���

���

���

���������������������������������

���

��

���

���

���

��

���

��

���

�������� �� ������ ����

����� ���������������� ������������������������ ���� ��������� �����������������

���������������������������

���

��

��

��

��

���

���

���

���

����� ��������� ���������� �������� ���� ��������� ����������������� ���

���

������������������������������������

��

��

��

��������������������� � ���

���

���

��

��

��

���

���

��

��

��

���

��

������������������������ ��������� ������������ ����������������� �������������

��

��

���

��

���

���

��

��������������������� � ���

����������

��

�����

�� ���

���

�� ��

���

�� ��

���

�� ���

��

�� ��

��

�� ���

���

�� ���

����������������������

��������������������� � ���

��������

��������

��������������������������

������������������

�� ��������������

�� ��

��������

�������������������

������������������

�� ���

�� �������������������

��������

����������������������

������������������������

�� ������������������������������������

�� ��������������������������������

�� ��������������������������������������

�� ��������������������������������������

��������

����������������������������������

������������������������

�� ���

�� ��

�� ����������������������������������

��������

�������������������������������������

�����������������

�� ������������������������

�� ������������������

�� ����������

��������

���

�����������������

�� ������������������������������������

�� ������������������������

�� �����������������

��������

������������������������������������

�����������������

��������������������� � ���

�� ������������������

�� ��

�� ���

��������������������� � ���

���������

��

� ���

� ��

� ����������� ��� ��������� ��� ��������� ������ ��� �������� ����������

��������������

� ���

� ����������� ���������� ��� ��������� ��� ��������� �����

���������������������

� ��

����������������������

� ������� �������� ��� ��������� �� ����������� ���� ����������� ��� ���������

����� ����� ��� ��������� ��� ��������� �� ������������ ���� ����� ��� �������

��������������������������

���

� ��

��

� ���

���������������

� ��

� ���������������������������������

�������������

� ���

���

��������������������� � ���

� ��

�����������������������

� ��������� ��������� ����������� �������� ���� ��������� ���� ��������� ���� ����

��

��������������������

� ��

���

� ��

���� ���� ������� ��

��������

� ���

���

������������������������������������ ���������������������������������������

�������������������������

���

��

��

��

��������������������� �� ���

������������

�������� ��� �������� ��������� ���� ��������� ��� ��

��������� ���� ������� ��������� ����� �����������������������

���

���������������������

�������� ���� ������� ��� �������� ���������� ��� ��������� ��� ���� ������������ ��

��

���������������������

������� ��� �������� ����� ����������� ��������� ���� ������ ���

������ ���� ���������� ���� ���� ��������� �� ������������ ��� �������

������� ����� ������� ��������� �������� �������������������������������

���

��

�������� �������� ��������� ������� ���

��

Basic notions of
economics

Lluís Bru Martínez

PID_00145050

GNUFDL • PID_00145050 Basic notions of economics

© 2009, FUOC. Se garantiza permiso para copiar, distribuir y modificar este documento según los términos de la GNU Free
Documentation License, Version 1.2 o cualquiera posterior publicada por la Free Software Foundation, sin secciones invariantes ni
textos de cubierta delantera o trasera. Se dispone de una copia de la licencia en el apartado "GNU Free Documentation License" de
este documento.

GNUFDL • PID_00145050 Basic notions of economics

Index

Introduction... 5

Objectives... 6

1. Value creation... 7

1.1. Product demand .. 7

1.2. Product supply .. 9

1.3. Value creation and competitive advantage 9

1.4. Summary ... 12

2. Economic features of the software industry.............................. 13

2.1. The costs of producing, copying and distributing digital

technology ... 13

2.2. The economics of intellectual property and ideas 14

2.3. Complementarities .. 18

2.4. Network effects .. 18

2.5. Compatible products and standards ... 20

2.6. Switching costs and captive customers 21

2.7. Compatibility and standardisation policies within and

between platforms ... 22

2.7.1. Policies of compatibility and standardisation within

a platform .. 22

2.7.2. Policies of compatibility and standardisation

between platforms ... 23

2.7.3. Public software policies ... 24

Summary.. 26

Bibliography... 27

GNUFDL • PID_00145050 5 Basic notions of economics

Introduction

This first module introduces the main concepts of product economics and fo-

cuses particularly on the specific features of the business of information and

communication technologies. These concepts are intended to lay the founda-

tions for understanding the different actions and business models established

by the business policy, which we will see later.

The first section introduces the basic notions of product value according to

supply and demand and of competitive advantage over rivals as essential tools

for business viability.

In the second section, we will describe the main economic effects relating

to the features of technology products and software in general. In it, we will

explain how a company can act on the market by establishing a policy to

manipulate these effects in order to create a scenario that will afford it the best

possible position over its competitors.

GNUFDL • PID_00145050 6 Basic notions of economics

Objectives

After completing this module, students should have achieved the following

aims:

1. To understand the basics of the relationship between supply and demand,

particularly with concepts concerning value creation.

2. To identify and analyse the key economic features of the software industry.

3. To obtain a detailed knowledge of and link the economic effects associated

with the software market.

4. To identify and analyse the economic effects likely to transmit value or a

competitive advantage to products based on free software.

5. To obtain a detailed understanding of the management policies and strate-

gies of the free software market.

GNUFDL • PID_00145050 7 Basic notions of economics

1. Value creation

To ensure the viability of a given business, there must be people or businesses

willing to pay, as customers, for the product or service offered to them, and

these payments must compensate their providers for the expenses incurred.

First of all, we will explain in simple terms the basic economic concepts at

work in this interaction between the company organising the business and

the prospective clients of its product or service.

1.1. Product demand

First of all, we need to introduce some of the possible rules of conduct for

the businesses and households that we want to convert into customers of our

business.

A consumer (if we are talking about consumer goods) or a company (if pur-

chasing machinery, raw materials, etc). will consider buying a particular prod-

uct or service if the amount of money asked of them in exchange (payment)

seems reasonable to them.

In this situation, the prospective buyer makes the following argument:

1) Firstly, he/she considers it reasonable to pay at most an amount of money

V to acquire the product or service being offered in exchange. Therefore,

if he/she is asked for an amount of money P less than V, he/she will con-

sider it worthwhile to acquire the product. So, for someone to consider

becoming our customer, the following conditions must be fulfilled:

Assessment of product – its price = V-P > 0

To put it another way, a company will not be paid more than V for its

product or service. However, this will not guarantee that the customer will

buy the product.

2) Secondly, the customer will compare this offer with the available alterna-

tives. Of two or more similar products, the consumer will choose the one

in which the difference of V–P is greater.

GNUFDL • PID_00145050 8 Basic notions of economics

Example

A family is thinking about buying a car. The family values the model of manufacturer A
at €40,000 (Va = €40,000) although the selling price is €30,000, Pa = 30,000. The family
values the model of manufacturer B at a lower price; to be exact, let's suppose that it
values the car less due to inferior features (for example, it is a smaller vehicle) at €35,000,
Vb = €35,000.

The family in our example will buy the model of manufacturer A, even though it is more
expensive, so long as the car of manufacturer B is sold at over €25,000, and vice versa: it
will buy manufacturer B's car if it is cheap enough, i.e. if its price is under €25,000:

We can conclude that:

It will only purchase the product of manufacturer A if

Va–Pa = 40,000 – 30,000 > Vb–Pb = 35,000–Pb,

i.e. only if Pb > 25,000.

It will only purchase the product of manufacturer B if

Va–Pa = 40,000 – 30,000 < Vb–Pb = 35,000–Pb,

i.e. only if Pb < 25,000.

Thedemand for a particular product consists of the series of customers

obtained for each possible price of the product in question.

In our example, if every family values these products in the same way for

prices over €25,000, there will be no demand for manufacturer B's product,

while for lower prices, we have the demand of all of the families that value

the product of the same family that we have discussed.

On what does the value V that a prospective customer gives to a product or

service depend? First and foremost, it depends on the intrinsic ability of the

product to meet the customer's needs, but also:

1)On the customer's ability to adequately evaluate the product, which de-

pends largely on his/her background and education.

It would be difficult for a customer to evaluate the GNU/Linux operating system, for
example, if he/she does not even know what an operating system is and has never even
considered that a computer is not necessarily required to have the Microsoft Windows
operating system installed.

2)On the importance of the availability of secondary products to complement

the main product that we are being offered (a car is more valuable if roads are

better and petrol stations are easy to come across, and less valuable if roads are

congested, public transport is good, if petrol becomes more expensive, etc).

3)On the real spread of the product offered to us, i.e. the number of other

people who have it: telephone and e-mail are more valuable the more people

who use them.

GNUFDL • PID_00145050 9 Basic notions of economics

1.2. Product supply

For their part, employers will concentrate on a certain product so long as they

can obtain a reasonable profit from it, which requires them to consider two

key aspects:

1) The costs of looking after customers.

2) What they would gain by engaging in another activity.

Example

Let's say a couple decides to open a bar. At the end of the first year, they have obtained a
revenue of €150,000, while the costs of serving patrons, hire of the premises, etc. amount
to €120,000. We can see that the first condition is fulfilled because the revenue has far
exceeded the costs; accountants would tell us that we have a profit, since the revenue
covers costs.

However, imagine that, in order to open the bar, this couple gave up their jobs as paid
workers, which had given them an annual income of €40,000. These alternative incomes
are what economists call the opportunity cost of setting up the bar as a business. We can
see that the second aspect is not covered in the example:

The business is not really making money because

Revenue – costs = 150,000 – 120,000 = 30,000

< Opportunity cost = 40,000

Of course, this couple may still prefer to run the bar than to work as employees, so we can
consider their sacrifice in terms of the money left over at the end of the year reasonable if
the satisfaction of running their own business compensates for this. Our point is, firstly,
that they are not running a good business from a strictly monetary perspective, and
secondly, that their decision will only seem reasonable if it is a lucid decision, that is, if
they consciously accept this loss of revenue; it would not be reasonable if they did not
accept that they would have less money.

To turn the bar into a good business, the profits must outweigh the "profit" from the
alternative activity or opportunity cost.

If the annual revenue of the bar is €180,000, for example, then we would be talking
about a good business:

This would be a good business because

Revenue – costs = 180,000 – 120,000 = 60,000

> Opportunity cost = 40,000

We can conclude that, in order to sustain a business, the profits obtained must exceed
the opportunity costs of engaging in alternative activities.

1.3. Value creation and competitive advantage

Based on what we have seen so far, we can consider the requirements that

need to be met for a business to be profitable.

Firstly, it is necessary to create value, i.e. that the valuation V made of the

product on offer by prospective customers exceeds its costs:

GNUFDL • PID_00145050 10 Basic notions of economics

For a business to be viable, it is essential for

product valuation – costs – opportunity cost > 0

Only when this is true can we say that a company creates value and can be

viable, because only then can we find a price that is fair for both the customer

and the company.

Example

If the value of a product for a customer is V = €100 and the cost of taking care of the
latter is C = 60, we can find a satisfactory price for the customer and the company, such
as P = 80, and the exchange will be satisfactory for both because the following conditions
hold true:

V – P > 0

and

P – total costs > 0

Fulfilment of the condition V – C > 0, however, does not guarantee the via-

bility of a business. To illustrate this, we will go back to our previous example

in section 1.1 (product demand), though this time from the point of view of

two rival companies trying to win over a customer:

Example

We have two car manufacturers offering two similar models. We have seen that the family
valued one of the cars at Va = 40,000 and the other at Vb = 35,000.

Imagine that the manufacturing costs of company A are Ca = 20,000, while those of
company B are Cb = 10,000. Both companies manufacture at costs far below the respec-
tive Va and Vb valuations.

Therefore, if they had no rival, both companies would clearly be viable as a business.

Now imagine that company B decides to sell its vehicles at the price of Pb = 18,000.
Customer satisfaction is

Vb – Pb = 35,000 – 18,000 = 17,000.

Company A must provide a greater – or at least similar – level of satisfaction to gain
customers:

Company A gains customers if:

Va – Pa > Vb – Pb = 17,000 only if < 23,000.

Company A therefore has the ability to attract clients and cover costs. However, if we
look closely, we see that this company is at the mercy of its rival:

If company B decides to lower its prices to less than 15,000 (e.g. Pb = 14,000), company
A cannot continue to attract customers without incurring losses:

Vb – Pb = 35,000 – 14,000 = 21,000 and

Va – Pa > Vb – Pb = 21,000 only if Pa < 19,000, but then

Pa – Ca < 0 !

GNUFDL • PID_00145050 11 Basic notions of economics

In this example, company B has a competitive advantage over its rival, com-

pany A. The result is that one of two situations occurs:

1) Company B attracts all of the customers, such as when it establishes Pb =

14,000, or

2) The two companies share out the customers, but company B makes more

money on each:

They divide the customers between them if Va – Pa = Vb – Pb, but this means

that Pa – Ca < Pb – Cb, for example if Pb = 18,000 and Pa = 23,000.

Ultimately, the company with the competitive advantage will guarantee

its survival and, in all events, make more money than its rivals.

In the above example, company B had a competitive advantage in costs: al-

though the product was perhaps not best suited to the needs of customers, Va

> Vb, was able to produce a reasonable product with costs well below those

of its rival.

Inditex

An interesting example for us to consider on this course is Inditex, the company that
owns the clothing retailer Zara. The fashion clothing industry, of which the company
forms part, is a highly competitive sector in which companies can copy each other's
designs without limits. Nevertheless, there is a very high degree of inventiveness, with
new models appearing every season, year after year (and naturally, a considerable number
of companies that engage in this activity), and at very low prices. As customers, therefore,
we can reap the benefits of a highly competitive and innovative industry.

Despite all of this, Inditex manages to expand its market share each year (i.e. it attracts
an increasing proportion of customers) because of its competitive advantage in costs,
which appears to consist basically of (1) rapidly detecting the designs that sell best in a
given season and (2) immediately adapting production to these designs. As a result, costs
are lower because it does not produce clothing that does not sell and it sells a lot of the
clothing preferred that year.

And it would appear that this achievement is no mean feat, because its competitors are
incapable of copying their behaviour (at least in such a clever way).

A company with a competitive advantage in costs will gain more cus-

tomers and obtain higher profits because it can sell its products more

cheaply.

Alternatively, a company might have a competitive advantage through differ-

entiation, i.e. in offering a product more highly valued than that of its rivals

at a reasonable cost.

And this superior valuation can be general, in the sense that all potential cus-

tomers consider the product to be of a higher quality (this is the case of pres-

tigious German car brands, for example), or of a niche, i.e. it is a specialised

Adobe

Adobe and its Acrobat soft-
ware is a good example of a
better valued product at a rea-
sonable cost.

GNUFDL • PID_00145050 12 Basic notions of economics

product for a particular type of customer (any village shop fulfils this require-

ment: it is a shop geared to a particular type of customer, namely, the residents

of the village, the only ones for whom it is more convenient to buy bread or

the newspaper there).

Competitive advantage through differentiation allows the company to

sell more expensively without losing customers.

1.4. Summary

We have seen in basic terms and from an economic point of view what setting

up a viable�business is all about. To summarise, it consists of creating a prod-

uct or service that is beneficial to our customers, so that we can charge for it

while keeping costs under control.

When setting up a business based on free software, the crucial financial ques-

tion is: what product or service can I charge the customer for? Before moving

on to discuss this in the next section, we will look at a series of relevant eco-

nomic features of the software industry that we will need to understand in

order to answer this question.

GNUFDL • PID_00145050 13 Basic notions of economics

2. Economic features of the software industry

As we explained at the beginning, no economic legislation has changed and

none of the economic phenomena related to information and knowledge

technology industries are qualitatively new. What has changed, if anything,

is the relative importance of certain economic effects on our society. In ICT

industries specifically, in the market interaction between companies and their

customers, there is a series of very important economic phenomena that can

distort the operation of these markets. We will now look briefly at the follow-

ing effects:

1) The costs of copying and distributing digital technology.

2) The economics of intellectual property and ideas.

3) Complementarities.

4) Network effects.

5) Compatible products and standards.

6) Costs of change and captive customers.

7) Policies of compatibility and standardisation within a platform and be-

tween platforms.

A recent example of this last point is compatibility�across�platforms�and

the�policy adopted on this issue by the proprietary�software�company�Mi-

crosoft, which has led to the intervention of the European Commission in

defence of free�competition between companies. Given its importance for the

proper conduct of business models based on free software, we will also briefly

discuss the approach of the European Commission to the matter.

2.1. The costs of producing, copying and distributing digital

technology

Digital technology has a very specific cost structure: it is very expensive to

develop a specific product as this requires major investments, and we cannot

simply half-develop it.

However, making high quality copies of the developed product and distribut-

ing them is relatively cheap.

GNUFDL • PID_00145050 14 Basic notions of economics

Thus, it is very economical to serve additional customers; the expensive

part is the initial investment that will lead to the development of a

product around which we can organise a business.

Commercial aviation

Similarly, a commercial aviation company must make a big investment in an aircraft if it
wants to set up frequent connections between two airports. It is no use trying to purchase
half an airplane, the company will need to buy the whole aircraft. However, serving
additional customers – until the plane is full – will work out very cheap for the company.

Naturally, the huge reduction in the costs of copying and distributing the

products and services developed with digital technology has led to significant

changes in certain industries.

The music industry

A typical example is the music industry, which was based around control over the copy-
ing (understood to mean a copy of a similar quality; with analogue technology, the sound
quality of a cassette tape copy was far inferior to that of a record or CD) and distribution
of the product (primarily through specialised shops).

2.2. The economics of intellectual property and ideas

ICTs are characterised by the fact that they allow the manipulation,

broadcasting and reproduction of information and ideas. As a result,

the advance of these technologies has the basic effect of encouraging

the�spread�of�ideas�and�their�use.

Ideas, as an economic asset, have the quality of being non-rival�goods:�just

because a person uses an idea does not mean that others cannot use it too.

ICT industries spend a lot of financial resources on developing�new�knowl-

edge, with the aim of making a profit on the exploitation of these ideas. From

the point of view of the interest of general society, every time new knowledge

arises, whether it is a scientific discovery, a new technique, or something else,

the diffusion of this new idea poses a problem. Firstly, it is clear that once

this new knowledge is available, it is in the interest of society to disseminate

the idea as far as possible. However, the companies that have developed this

knowledge have done so in order to gain a profit from it, and they can only do

this by restricting access to the new knowledge. Without some form of pro-

tection�against�the�immediate�dissemination of this knowledge, we run the

risk that companies will not invest money in the search for and development

of new ideas and knowledge.

Advanced societies have created different institutions and mechanisms to fa-

cilitate the generation of new scientific and technical knowledge. Scientific

creation is financed through public resources. The development and funding

of more practical and applied knowledge for the creation of new production

Non-rival goods

If Peter eats an apple, John
cannot eat it. In contrast, if Pe-
ter uses a recipe, John can also
use it.

GNUFDL • PID_00145050 15 Basic notions of economics

techniques and new products is generally left to the private sector. In these

cases, public institutions adopt the role of promoting private-sector activity

by protecting intellectual property through the institution of a series of legal

concepts, most notably copyright, patentsand trade�secrets.

Copyrightprotects the particular expression of an idea.

Cases of copyright

A typical example is the right of the author of a song or book over his or her work, which
means that nobody can publish or distribute it without his/her consent. A person or
company that makes a useful discovery may apply for a patent on it, which prohibits
others from using this discovery without consent for a specified number of years (usually
20). Lastly, with trade secrets, companies can keep new knowledge secret and receive
legal protection for theft. In this case, the inventor is obviously not protected if others
make the same discoveries independently through their own efforts.

While proper use of some of these concepts of intellectual property protection

may actually stimulate technical and economic progress, unfortunately, they

pose two problems: it is highly questionable that all these legal concepts real-

ly do protect the development of ideas and that, in recent years, many com-

panies have made spurious use of the legal concepts that could be useful for

them. Instead of legitimately protecting their innovation, many companies

use their copyrights and patents as anti-competitive instruments to safeguard

their market power and make it harder for more innovative rivals to enter.

In the case of software, the emergence of proprietary systems has made it easy

for companies to keep trade secrets due to the possibility of distinguishing

between the software's source code and binary code. We can use a program,

i.e. we can get the hardware – be it a computer, mobile phone, game console,

ATM, etc. – to work with a computer program by incorporating the binary

code on to the computer without having access to its source code. Therefore,

proprietary software companies use a business model based on charging mon-

ey for providing a copy of the binary code of their software. The result is that,

without knowing the source code, we cannot discover why the program works

one way but not in another, and we naturally cannot edit it to allow us to

do other things.

The trade�secret (not revealing the source code), then, allows companies first-

ly to hide the developed product from their rivals and then, despite every-

thing, to sell a product to consumers (the binary code of the software pro-

gram).

GNUFDL • PID_00145050 16 Basic notions of economics

Free� software is the exact opposite since it is based on sharing� the

source�code of the program. As we shall see, this requires the develop-

ment of an entirely different business model based on offering a service:

the ability to modify and adapt the software to customer needs using

the expertise and knowledge of the computer engineer.

Copyright,�patents�and�innovation

P. And you don't agree with patents in software either...

R. Let's just say that I am very sceptical that they serve the purpose they were supposedly
designed for. Software is an industry where innovation is sequential. Every new discovery
or improvement is constructed on what has been developed before, like a tower. A patent
applied at a certain level of the tower slows down further developments. In practice, this
works like a monopoly.

Interview with Eric Maskin, 2007 Nobel Laureate in Economics, published in El País,
29/06/2008.

Is it true that a creator is really that unprotected without copyright or patents

on their ideas? Many creators seem to think so. For example, in a discussion

with the CEO of the Bimbo company, published in El País on 11 August 2006,

the famous chef Ferran Adrià said:

Recommended reading

You can read the full inter-
view in the article published
inEl País on 29/06/08 "Es
difícil prevenir una burbuja"

"One thing that has not been resolved in this country is the protection of creativity. You
can copy without fear. R&D makes little sense. The same thing happens in restaurants."

...

"You invent something and a month later, somebody's copying you! In life, there are
things that are wrong, things that don't work, and this is one of them. You can work on
something for years with hope and ambition and, a month later, someone comes along
and introduces it without having put in any effort whatsoever..."

Is it really that easy to copy his ideas? Does this mean that his business model

cannot work? We can be sure of one thing: his business is working. So what

stops Ferran Adrià from running out of customers?

1)Firstly, what Ferran Adrià really sells to his customers is not an idea (a recipe)

but rather the cooked dish. For the idea to be consumed by his customers, it

must be incorporated into a specific cooked dish, just as one does not buy a

concept of a car, but rather a specific car.

2)�Secondly, in relation to the fact that we consume or use products and ser-

vices that are the materialisation of an idea, it is not enough to have access to

the idea, i.e. the "recipe". To turn it into the cooked dish, we must have the

skill and knowledge and the right tools. With regards the latter (tools), Adrià

himself often says that the public should not expect to repeat the dishes he

cooks in his restaurant because home kitchens do not have the right tools. He

recommends cooking simple things at home.

Recommended reading

You can read the whole dis-
cussion in the article pub-
lished in El País on 11 Au-
gust 2006.

GNUFDL • PID_00145050 17 Basic notions of economics

Therefore, the investment in the tools that will enable us to replicate the idea

puts limits on the possible number of imitators, and hence, on the number

of true copies, that is, dishes cooked by professionals to rival his own. This

is a fundamental point to bear in mind with any industry. Copying an idea

is not as obvious as it seems, i.e. transforming it into a product or service

requires some knowledge (be it the expertise that comes with experience or

the knowledge gained by study, or both) and investments in machinery, tools,

raw materials, etc., which limit the true rivalry in the industry.

The�professional�technician

This is something that probably occurs in every professional activity. We may be able
to change or regulate the taps in our homes, but we will probably not have the tools
that a plumber has (buying them just to change a tap every number of years would be
excessive), even if we really believe that we have the technical skills to do it.

3)Thirdly, as Maskin notes in the case of software – and as is also the case of

textile design and software development – culinary innovation is sequential

and cumulative: each new recipe is not started from scratch; it is based on

previous results. This is something that Adrià himself explains in a series of

articles written in conjunction with Xavier Moret and published in August

2002 in El País, chronicling his travels to different countries:

"Trips are now adopted as a method of creation; that is, we go to be inspired, to seek out
the sparks that will give us ideas, or specific ideas from other cuisines that can evolve
our own cuisine.[...] I think that this approach of knowing what others do is vital in any
activity in which you want to evolve."

Thus, innovation does not appear to come from scratch. On the contrary, each

time he comes up with a new recipe, it is inspired to a greater or lesser extent

by that of his predecessors, whether in the established cuisine of the culinary

tradition of his own country or in the cuisine of other countries. His reputa-

tion as an inventor of recipes and good executor of them (his reputation, built

on the experience of those who have dined at his restaurant) allows him to

enjoy what we call in section 1.3. "competitive advantage through differenti-

ation", which means that he can charge a higher price than other chefs (per-

haps his imitators) without losing his clientele.

Alternatively, a company can base its competitive advantage on its lower costs,

as we saw above with Zara: while perhaps not the most innovative company

of its sector, it is inspired by or adapts the designs of other companies with a

certain style (i.e., people like to wear the clothing it sells in its stores) and it

is capable of doing so at lower costs than its rivals.

GNUFDL • PID_00145050 18 Basic notions of economics

2.3. Complementarities

When dealing with software, we need to remember that what we actually val-

ue is not the product by itself, but a series of products that complement one

another; in fact, the software is simply one of the parts of the system that we

actually use.

It is common to see complementarities in products and services related to

ICTs.

The�complementarity�of�computer�equipment

Similarly, we do not simply want a computer (taking "computer" to mean the physical
object, as we saw above with the television), we also want the physical objects that
complement the computer, such as printers, digital cameras, scanners, etc. And all these
physical objects are not enough; we also need software. We need to have everything that
will make the computer run (i.e. the operating system), along with the software we call
applications, which allow us to use the computer to perform different tasks. Examples
of application software include office automation packages, Internet browsers, e-mail,
etc.

Therefore, the complementarity of the various products that make up a system

in any digital technology (not only the computer) means that each element

of the system in isolation does not really serve much purpose. Naturally, this

means that it is essential for these different parts to fit each other and to work

properly as a whole, i.e. the various components need to be compatible with

one another.

2.4. Network effects

We say that there are network effects or externalities when the value of a prod-

uct or system for each person who uses it increases the more people who use

it. Network externalities can be of two different types:

1) Direct.

2) Indirect or virtual.

Direct�externality is perhaps easier to understand: we often find a prod-

uct more valuable the more widespread it is, since we can then share

its use with more people.

Direct externality

Obvious examples of this are telephones, fax machines, e-mails, etc. Note that to truly
take advantage of the mass of people who also have a phone, it is essential that theirs
and ours are compatible (they understand each other). It is pointless for us to have a fax
and for others to have one too if their fax does not accept or understand the messages
sent to them by our machine.

Complementary products

There are televisions with very
diverse levels of quality, but
even the best television is a
completely useless appliance if
we have no connection to tele-
vision channels, DVD player,
etc.

GNUFDL • PID_00145050 19 Basic notions of economics

As we will explain in more detail in the next section, potential network effects

are not used to advantage unless there is a standardisation process ensuring

that the objects in the hands of different people are compatible, since only

then can we really communicate with lots of people.

Mobile�telephony

In the United States, the various mobile telephony companies could not agree on us-
ing the same system. As a result, mobile telephony in the US is much less useful than
in Europe, where the European Commission promoted the use of a single standard
for all countries. The immediate consequence is that mobile telephony is much less
widespread in the United States, to the detriment of the entire industry, companies
and clients.

Indirect� network� externalities are a more subtle economic effect.

When a product is actually a system made up of different parts that

complement one another and are not very valuable individually, the

value of a product depends on its popularity, since we will have more

complements (or better quality parts) the more people who become in-

terested in the product.

In any case, direct and indirect effects have one thing in common: again, it is

essential for other individuals and companies to have compatible�products.

In these cases, to ensure that the markets for these products take off, one of

two situations must occur: either the government must intervene or the ini-

tiative must be taken by an economic agent with sufficient power to modify

the market conditions by itself and sufficient financial resources to withstand

years of customer adaptation.

Direct and indirect effects

Here are two examples of the importance of these effects for the launch of products with
network externalities:

1) The new high-definition video formats. The manufacturers of the new design have se-
cured the commitment of the major film producers, who have said that they will broad-
cast their new productions in this format. Thus, the customers who use the complement
for the new video players will be guaranteed support to make the most of the superior
resolution of these appliances.

2) The next example shows that this economic effect is present in other sectors too, not
just in ICTs. We will not buy a car that runs on the new biodiesel fuels (i.e. produced
from vegetable oils) if we cannot find service stations supplying these; in turn, individual
service stations will have little interest in changing their pumps and deposits if they feel
that they will not have any customers, manufacturers will not be encouraged to make
biodiesel, etc.

In these cases, in contrast to what happens when other people also have fax machines,
there is no direct service to be gained from other people having cars that run on biodiesel
(i.e. there is no direct effect). Only when there is a considerable mass of people with
biodiesel cars will service stations adapt their fuel deposits and pumps to the new fuel.
We could say that, indirectly, any person who buys a biodiesel car is doing a favour to
other biodiesel car buyers.

Indirect externalities thus explain the importance of the use of this new fuel for growth
by the fact that the government subsidises the cost of its manufacture and the impor-
tance of the recent agreement between Acciona, currently the most technically advanced

GNUFDL • PID_00145050 20 Basic notions of economics

company in Spain in the manufacture of biodiesel, and Repsol, with the largest fuel dis-
tribution network in Spain. The agreement between the two companies will ensure the
supply of biodiesel fuel at service stations in the near future. Manufacturers and dealers
will now be encouraged to sell biodiesel cars because they can guarantee buyers a no-
nonsense fuel supply.

When the important features of products and services include complemen-

tarities and network effects, the most important consequence of this is that

a product will not be viable if we do not achieve a sufficient critical mass of

users: below a certain number of users, the product will not offer enough ben-

efits to make it valuable, so the potential suppliers of complementary products

will not make the necessary investments to make them available to customers.

VHS�format

Inertia towards the use of a version can eliminate the viability of alternative versions
that are technically feasible. Betamax video recorders disappeared when everybody
decided to have VHS video recorders instead. Even though the total number of house-
holds with video recorders increased each year and the number of films available on
video also grew, the owners of Betamax video recorders did not have access to them
because most new titles only came out in VHS format, which was much more popular.
After a time, manufacturers only made the effort to improve the VHS versions of video
recorders.

Another danger created by these effects is that a consolidated company with a

considerable customer base may interrupt the normal operation of competi-

tion through strategic actions that make it difficult or impossible for the new

products and services of its rivals to obtain a sufficient critical mass.

In software, as we will see shortly, the main anti-competitive strategy is to

make the product of the company dominating the market incompatible with

the products of its rivals.

2.5. Compatible products and standards

We can define a standard as the set of technical specifications allowing

compatibility between the different parts of a system.

As we saw in the preceding sections, the value of a product depends largely

on the existence of accepted standards:

1) When a product is made up of different elements that complement each

other.

2) When the network effects are significant.

In the ICT industry, it is clear that the standardisation of hardware (i.e. the

physical devices) has, fortunately, advanced a great deal. Today, virtually any

computer peripheral can be connected to a port on a computer (such as a

GNUFDL • PID_00145050 21 Basic notions of economics

USB port), and when we buy a printer, for example, we know that we need

not worry: when we get home, we will be able to connect it to the computer

without a problem.

Component�obsolescence

Those of us of a certain age will remember that things were quite different some years
back. We have all had the experience of purchasing an electronic or computer device
or part that has become obsolete simply because we can no longer connect it to the
other components that it is supposed to form part of.

And the younger ones among us will understand what we mean if they think about all
the chargers we have to lug around (mobile, laptop, etc.) because these devices do not
work with the same charger – often even when the products are manufactured by the
same manufacturer! If we decide to change our mobile one day, we can unfortunately be
sure that we will have to throw away the charger because it will be of no use anymore.

2.6. Switching costs and captive customers

Very often, we have products designed to offer a similar service that are un-

fortunately not compatible with one another. This was the case of records and

CDs, and more recently, with devices to play video in VHS and DVD format.

Objectively, in these two examples, we can say that one of the technologies

is clearly superior to the other. So if we have to choose between the two tech-

nologies with no prior conditioning factors, we would be in no doubt about

which to use.

Due to complementarities, however, for those who used the outdated tech-

nology, the switch was very expensive at the time. Those with vinyl records

who wanted to change to CDs had to first buy a CD player and then buy their

records again on CD if they wanted to play them using the new technology.

In general, due to complementarities and network effects in the world of ICTs,

switching from one version of a product to a different and incompatible one

is expensive, to the point that we will possibly continue to use the old tech-

nology for a long time unless we consider the improvement in quality to be

very significant.

Naturally, with computers and particularly with software, these switching

costs can be significant. They include the costs of learning new programs when

we are already used to a given version. This is the reason why programmers

tend to make new programs that are similar in appearance and operation to

the programs we are already familiar with.

Similar programs

The OpenOffice word processor mimics Microsoft Word, which, in turn, imitated an
earlier program, WordPerfect, which did the same with WordStar (i.e. the most popular
word processor of the time in each case); Microsoft Excel mimics Lotus 1-2-3, which, in
turn, imitated a previous program, VisiCalc. And we could continue with many other
examples.

GNUFDL • PID_00145050 22 Basic notions of economics

Given the costs of switching from one product to another, if incompatibilities

arise, consolidated companies with a solid customer base can be tempted to

inflate these switching costs, making it harder for customers to switch prod-

ucts or suppliers.

Similarly, with software, consolidated companies are tempted to make their

products incompatible with those of their rivals.

2.7. Compatibility and standardisation policies within and

between platforms

As we have seen, compatibility between the different parts that make up a

product and between different products is essential if we are to make them

much more functional. Hence, it is important to establish standards that will

allow us to make products�compatible with one another.

Very often, standardisation comes about when the format of an essential part

of a system is adopted by everybody. This essential part that marks the stan-

dardisation process is sometimes called a platform.

These standardisation processes are sometimes the result of the work of bodies

set up for the purpose of defining these standards. They can be state or supra-

state bodies, or created by members of the industry.

In software, different standards are established for any given procedure, such

as all communication protocols governing the transfer of information on the

Internet.

Switching costs

Years back, when rival com-
panies emerged, the old
telephone monopolies tried
to force their customers to
change their telephone num-
ber if they wanted to switch
suppliers (the idea was that
customers would not want
to incur the cost involved in
communicating the change
of number to everybody they
knew).

Other times, however, a company from the industry controls a portion of it.

In software, obviously, the prime example of a platform in the sense we have

explained is the Microsoft Windows operating system, installed on the vast

majority of computers, both personal and servers.

It is important to understand the interests that guide the owner of a product

that has been transformed into a platform in one way or another. In particu-

lar, we will look at the interests behind the policies of compatibility between

its product and products that complement it (policies of compatibility within

a platform) and with products that are its potential rivals (policies of compat-

ibility between platforms).

2.7.1. Policies of compatibility and standardisation within a

platform

Within a platform, a broader range of applications can make the platform

more valuable in two ways: customers get more out of the platform – and

are thus willing to pay more – and the application creators in turn will see

Sony and Phillips

These two companies were
able to impose their technol-
ogy for producing compact
discs through the force of cir-
cumstance. As a result, all
record labels now distribute
their music on this digital for-
mat, all music devices are de-
signed to play them, etc.

GNUFDL • PID_00145050 23 Basic notions of economics

more business opportunities (as there will be a larger potential customer base).

As a result, they will make applications to run on this platform, which will

attract more clients, etc., creating a virtuous circle that will encourage the

dissemination of this product.

Thus, more applications complement the platform and make it more valuable.

In theory, the platform sponsor should be interested in opening it up to appli-

cation developers – indeed, Microsoft often argues that it has an open policy

because it shows the parts of the Windows software code (APIs) that applica-

tion developers need to know for their products to work with Windows.

However, the founder will have conflicting interests:

1) If it also has applications offering good performance, it will want to weaken

the performance of competing products and – in the worst case scenario –

even make them incompatible with its platform.

2) It may also be concerned that some applications may subsequently become

new platforms around which the other applications will develop without de-

pending on the platform that it controls.

Microsoft�and�Java

This is what happened to the Netscape browser and Java programming language: Mi-
crosoft carried out anti-competitive policies against this software because of concerns
that it could develop and replace Windows as the software platform for PCs.

To some extent, this gives us an indication of the behaviour that we could

expect of the owner of a platform established as the de facto standard when

faced with other products that could steal away its privileged position, as we

will now discuss.

2.7.2. Policies of compatibility and standardisation between

platforms

We have seen above that, due to switching costs, the share of customers ac-

cessible by the company that controls the platform can be a barrier to entry

for rivals, when there are network effects, if the company does not make its

product compatible with those of its rivals. Naturally, it is not only the rival

companies that lose out with these anti-competitive tactics but society as a

whole, since the options from which to choose are instantly reduced, and ul-

timately, so too is the quality of products available, because fewer companies

are prepared to spend resources on innovation and product improvement.

GNUFDL • PID_00145050 24 Basic notions of economics

Incompatible products, anti-competitive tactics

The best-known example of this kind of behaviour is that of Microsoft with its two flag-
ship products: the Microsoft�Windows�operating�system and the Microsoft�Office�of-
fice�automation�package.�Microsoft clearly does all it can to avoid compatibility with
other platforms (particularly with the GNU/Linux operating system, for example). In the
same vein, Microsoft has systematically pursued a policy of non-compliance with vari-
ous standards established by the computer industry by developing its own version of the
standard and failing to document the changes it introduces adequately. Very often, when
programs and applications apparently do not work properly, it is because the platform
does not meet the standards adopted by the industry.

The conflict between the various authorities representing the interests of society (both
in the United States and the European Union) and Microsoft basically concerns this pur-
poseful manipulation of the process of standardising a technology, altering the capacity
for communication and interoperation between different information platforms.

2.7.3. Public software policies

We will now briefly discuss some public policies that can promote the proper

functioning of software markets, particularly those that allow free software to

compete with proprietary software on equal terms and as a valid and viable

alternative in cases where the proprietary software boasts the advantage of

already having an established mass of users.

Defence�of�competition

First and foremost, governments must guarantee fair competition in the soft-

ware market.

The chief action of the competition authorities should be to ensure that no

artificial incompatibilities are created (i.e. ones that do not have a technical

explanation) between different technology platforms.

The current conflict between the European Commission and Microsoft boils

down to the latter's manipulation of the degree of compatibility between dif-

ferent products by altering the capacity for communication and interoperabil-

ity across different software platforms, in this case, communication between

the operating systems managed by servers and those managed by personal

computers.

The European Commission is asking Microsoft to make the information pro-

tocols of the Windows operating system available to everybody (particularly

computer server manufacturers and programmers) so that the other operating

systems can be made compatible with this system, i.e. so that all other oper-

ating systems can communicate and interoperate with servers running this

operating system.

Naturally, Microsoft's aim is to exploit the fact that the Windows operating

system is already widely implemented by artificially raising the costs of switch-

ing to another software for its customers.

GNUFDL • PID_00145050 25 Basic notions of economics

Policies�for�the�adoption�and�support�of�free�software.�Enforcing�compli-

ance�with�the�standards

We have seen the importance of network effects in ICTs and the need for soft-

ware to have a critical mass of users in order to be viable. Through these net-

work effects, large companies can exert their leadership over the implementa-

tion of free software. If the government and major corporations (in their own

interests or as a service to society) promoted free software in their organisa-

tions, they could create a sufficient critical mass for the population to consider

the use of free software more accessible.

Much of the proprietary software used today in these organisations could eas-

ily be replaced by free software with similar or improved benefits. The only

obstacle is the switching cost for individual users because of the lack a suffi-

cient critical mass.

The network effect of this policy in these organisations would be significant,

particularly the indirect network effects that would be generated: if these large

organisations were to acquire free software, this would create an important

source of business for IT companies whose business model is based on free

software and the provision of IT services to complement its implementation.

In all events, these organisations must first undergo a process of software ac-

quisition requiring compliance with certain protocols and compatibility stan-

dards. If the government, for example, were to establish procedures for the

acquisition of software and appropriate computer services, this would proba-

bly require the creation of a public agency to advise the various government

departments. These agencies could implement different mechanisms to pro-

mote the use of free software in government bodies.

GNUFDL • PID_00145050 26 Basic notions of economics

Summary

The information and communication technologies business has specific fea-

tures that affect the economic model of the business and, hence, the market.

Beyond the creation of value in products and management to gain a compet-

itive advantage over competitors on the market, a company can adopt a par-

ticular strategic policy to generate an impact on the economic effects of the

market:

• Although production costs are high, the costs of copying are minimal.

• Exploitation of ideas and safeguarding of intellectual property.

• Exploitation of the product's complementarities.

• The net effect of the product, whether by linking its worth to widespread

use or as an indirect promoter of complements.

• Compatibility between rival products.

• Control of switching costs in the face of product evolution and customer

captivity.

• Introduction of policies on compatibility and standardisation within and

across platforms.

Consequently, the particular features of free software allow it to establish a

new business format that breaks the mould of the typical policies of a very

traditional technology market in terms of the positioning of the competition.

GNUFDL • PID_00145050 27 Basic notions of economics

Bibliography

Boldrin, Michele; Levine, David (2008). Against Intellectual Monopoly. Cam-
bridge: Cambridge University Press. <http://levine.sscnet.ucla.edu/general/intellectual/
againstfinal.htm>

Jaffe, Adam B.; Lerner, Josh (2004). Innovation and Its Discontents. New Jersey: Princeton
University Press

Lerner, Josh; Tirole, Jean (2002). "Some Simple Economics of Open Source".The Journal
of Industrial Economics (pg. 197-234).

Perens, Bruce (2005, October). "The emerging economic paradigm of open source". First
Monday. Special Issue #2: Open Source. <http://firstmonday.org/issues/special10_10/perens/
index.html>

Shapiro, Carl; Varian, Hal (1999). Information Rules: A Strategic Guide to the Network Econ-
omy. Boston: Harvard Business Press

Press

Adrià, Ferran (1 August 2002). "Cazadores de ideas". El País.

"Aquí unos amigos" (interview with Ferran Adrià, 19 July 2008). El País.

"Does IT Matter?" (1 April 2004). The Economist.

"Es difícil prevenir una burbuja" (interview with Eric Maskin, 29 June 2008). El País.

<http://people.ischool.berkeley.edu/~hal/people/hal/NYTimes/2004-10-21.html>

"El tomo ha muerto, viva la red" (22 July 2007). El País. Negocios.

"Prince vuelve a enfurecer a la industria musical" (15 July 2007). El País.

"Star Turns, Close Enough to Touch"(12 July 2007). New York Times.

Varian, Hal (21 October 2004). "Patent Protection Gone Awry". New York Times.

The software
market

Lluís Bru Martínez

PID_00145048

GNUFDL • PID_00145048 The software market

© 2009, FUOC. Se garantiza permiso para copiar, distribuir y modificar este documento según los términos de la GNU Free
Documentation License, Version 1.2 o cualquiera posterior publicada por la Free Software Foundation, sin secciones invariantes ni
textos de cubierta delantera o trasera. Se dispone de una copia de la licencia en el apartado "GNU Free Documentation License" de
este documento.

GNUFDL • PID_00145048 The software market

Index

Introduction... 5

Objectives... 6

1. Businesses with similar features to free software.................... 7

1.1. Is it really so shocking that software can be free? 7

1.2. Software as part of a product ... 8

1.3. Software supply. Distribution ... 9

1.4. Software supply. Service .. 9

2. Who needs software?.. 11

2.1. Software, a basic need in any company 11

2.2. Paradigms of software development ... 11

Summary.. 13

Bibliography... 15

GNUFDL • PID_00145048 5 The software market

Introduction

This module introduces the main features of the software market in general

and how the free software model adapts to this market.

In the first section, we will see that it is fairly common to have access to prod-

ucts that are freely distributed or free of charge in our environment, and we

will look at the particular way in which this business works.

The second section looks briefly at the target market of the software and the

most common means through which potential customers acquire the product.

GNUFDL • PID_00145048 6 The software market

Objectives

After completing this module, students should have achieved the following

aims:

1. To understand the features of the market of products with free access.

2. To understand the relationship between free software and the exploitation

of parallel business models.

3. To understand the implications of software supply on the business con-

cept.

4. To obtain a detailed knowledge of paradigms of software development and

relate them to the features of free software.

GNUFDL • PID_00145048 7 The software market

1. Businesses with similar features to free software

Now that we have looked at the main economic concepts, we can answer the

question we asked in section 1.4 "Summary" of module 1:

If free software is free, i.e. by definition, anybody can gain access to this soft-

ware – possibly at no cost – how is it possible for computer scientists (and

computer companies) to earn a living from programming free software? Can

we trust that resources (money and people's time) will be spent in the future

on its maintenance and development?

1.1. Is it really so shocking that software can be free?

To put it another way, is it really so rare for a product to be freely distributed or

even free of charge? If we look closely, we can identify certain business models

that are based on offering a product free of charge to customers.

In general, any company whose business is to act as an intermediary be-

tween other companies and their customers must decide what pricing policy

to adopt, and perhaps the best option is to dismiss the possibility of making

money with some of these customers.

Different business models based on free supply

If a television wants to earn revenue from advertising, it needs to guarantee its paying
customers (the companies that place advertisements during broadcasts) the largest pos-
sible number of viewers, and the best way to do this is to allow the latter to receive the
television signal for free.

Similarly, if Adobe wants to attract customers for its PDF file creation product, Adobe
Acrobat Professional, it makes sense to offer the simplified version of this software, Adobe
Acrobat Reader, for free. This way, Adobe can guarantee its paying customers that other
users can actually read the documents that they create.

Likewise, Amazon, besides being a book shop that sells on-line, has transformed its web-
site into a platform that connects its customers with second-hand book shops offering
used books at a discount. When we check the availability of a title, we see Amazon's offer
together with that of the other bookshops. In this case, Amazon offers its customers the
possibility of viewing the series of available books for free and instead charges the book-
shops for its intermediation service. Given the reasons for adopting this pricing policy
discussed earlier, it is convenient that Amazon earns money from the sales of the other
book shops because it might otherwise be tempted to offer a biased service (ensuring the
sale of its own books over those of its rivals listed on the website).

Free products

In Spain, we have television
channels such as Antena 3,
Cuatro, Telecinco and La Sex-
ta that offer free television to
viewers. Of course, the busi-
ness of these stations is to sell
advertising, that is, to act as
intermediaries between com-
panies that want to publicise
their product and their poten-
tial customers (for example,
viewers will see advertising
placed before, during and af-
ter the broadcasting of a foot-
ball match).

Alternatively, a company can offer customers a product for free, but link it to

another product, which is the one it wants to sell. An example of this follows:
Recommended reading

You can read the full article
published in El País, 15 July
2007 "Prince vuelve a enfure-
cer a la industria musical".

GNUFDL • PID_00145048 8 The software market

"Anyone who has purchased the British weekly Mail on Sunday this morning has taken
home a free copy of Prince's new work, Planet Earth. In all, 2.9 million copies have been
sold."

[...]

Planet Earth will also be distributed free of charge to those attending any of the 21 con-
certs that the Minneapolis musician is putting on at London's O2 Arena from 1 August
to 21 September."

El País, 15 July 2007.

As we can see, in the first case, it is quite possibly the newspaper that has

bought the right to give away copies with its publication (a way to promote

the newspaper), while in the second case, the artist foregoes the possibility

of making money with the distribution of copies of the CD (contrary to the

efforts of music labels and record shops who want to hold on to their business

model at all costs) to focus on making money from his concerts. (Another

story, this time in the New York Times, says that the musician is putting on

exclusive concerts at small venues for which tickets, with meal included, are

being sold for $3,000 (12 July 2007, "Star Turns, Close Enough to Touch").

1.2. Software as part of a product

Software is only one component of a product (albeit a very important part), a

part or complement of the whole product that we wish to obtain, and what

we want is to have all the pieces – such as the computer and the software –

at the same time.

As a result, the multinational giants of the computer industry like IBM and

Sun Microsystems provide funding to computer scientists who develop free

software. Their selfish (in the sense that they are thinking primarily of increas-

ing their profits) reason is that they think that this will increase the sales of

complementary products and services for which they charge their customers.

Likewise, the leading mobile phone manufacturers (Nokia, Motorola, Siemens,

Samsung, etc.) teamed up to create – and allocate financial resources to – the

Symbian consortium, which develops free software designed as a program to

operate the mobile telephones that they manufacture. Thus, all mobile tele-

phone manufacturers use the same platform (the same operating system),

which is based on the GNU/Linux�operating�system and is flexible enough

for each manufacturer to then design a different mobile phone model to its

rivals, incorporating improvements and variations to attract customers (tele-

phones that double as cameras, allow the user to send e-mails, etc). Each com-

pany changes the appearance of the phone screen to adapt it to the services

it offers, since it has access to the source code of the program used to operate

the telephone. This system encourages innovation and product improvement

because the companies expect to attract new customers by creating a device

(the telephone) that works better than that of its rivals.

Recommended reading

You can read the full article
published in El País on 12
July 2007 "Star Turns, Close
Enough to Touch".

GNUFDL • PID_00145048 9 The software market

The fact that the big multinationals have fully incorporated free software as

a tool in their activities thus guarantees the future development of this soft-

ware. It even ensures that IT engineers can, on their own initiative, engage in

the development of free software. As Lerner and Tirole (2002) explain, these

engineers can demonstrate their professional expertise to companies in this

sector by participating in the improvement of this software, which will make

them highly sought after by IT companies, hence allowing them to improve

their employment prospects.

1.3. Software supply. Distribution

Just because the software is free, this does not mean that we cannot have

companies that exclusively supply related IT products and services.

To begin with, one possible business is the distribution of free software. In

addition to selling CDs containing the free software, these companies provide

technical support to the consumers and businesses that opt to use free software

(Red Hat is the best-known example of a company that has developed this

line of business). Therefore, the company offers its experience and knowledge

of the software to clients, guaranteeing them any technical support they may

need.

If we think about it, this business model is perhaps not as uncommon as it

might appear. For example, the publishing house Aranzadi has created a very

similar business model.

The information has always been freely available (Spanish legislation is pub-

lished in the Official Gazette and all law firms subscribe to it). However, or-

ganising the information in useful ways is a complicated task, and this is the

service that these publishing houses offer to their clients. And, naturally, these

companies have incorporated digital technologies to serve their clients, as we

see in the following press release:

Aranzadi

Aranzadi offers its clients (legal
professionals) a comprehensive
source of legal information.
It also provides the technical
support needed to process all
of this information efficiently.

The offices of law firms and tax experts are still bedecked with yard upon yard of solemn
legal tomes. But these are increasingly becoming mere decorations. Most legal experts
are already opting to access the necessary documentation for their work through the
Internet, an out-and-out revolution sparked by the big legal publishing houses such as
Corporación El Derecho, which has set a benchmark in new technologies.

Corporación El Derecho provides legal information to state prosecutors (through a call
for tenders organised by the Spanish Ministry of Justice) and basic tax information to
the Tax Office.

El País, 22 July 2007.

1.4. Software supply. Service

Broadly speaking, an IT engineer who works with free software has a similar

profession to a chef, car mechanic, plumber or lawyer.

Recommended reading

You can read the full article
published in El País, 22 July
2007 "El tomo ha muerto, vi-
va la red".

GNUFDL • PID_00145048 10 The software market

Law firms work with a knowledge and understanding of legislation that is

as free and widely available as free software could be. Clearly, their business

model consists of raising revenue from a complementary product, which is

their expertise or in-depth knowledge of the law, their ability to adequately

organise the information set down in legislation to defend their client's inter-

ests, which are things that their clients cannot necessarily do.

Ultimately, the lawyer incorporates the right ideas into the right product for

its client (defence of the latter's interests).

Similarly, computer engineers who work with free software offer clients their

expertise, the ability to meet their need to organise information in a specific

way and process data by harnessing the intrinsic possibilities of the free soft-

ware available, or, if necessary, by developing additional code.

Thus, we can see how a given economic sector (legal services) can even have

different levels of information (corporate, law and Aranzadi on one level and

law firms on another), which gives rise to multiple business models that si-

multaneously coexist.

GNUFDL • PID_00145048 11 The software market

2. Who needs software?

2.1. Software, a basic need in any company

Who are the clients of software companies? Nowadays, potentially any com-

pany. As Nicolas Carr points out in "IT doesn't matter", ICTs have been incor-

porated as an essential tool for all companies, just as nowadays all companies

are connected to the mains to light up their offices and power their machines,

they are all equipped with telephones, or they all use cars and trucks on the

motorways to transport their raw materials and products.

When Carr writes in his article that "ICTs no longer count", what he means

is that a company no longer has a competitive advantage just because it uses

them, since all companies now have access to them.

On-line ticket bookings

A commonly cited case in this regard are the commercial airlines that developed the first
ticket booking software. At the time, this software gave them an important edge over
their rivals. Today, all commercial aviation companies have a website where we can make
bookings and purchase plane tickets, so this software no longer constitutes an advantage
for a company over any other.

This evolution in the use of ICTs can be an advantage for free software devel-

opment in that it reduces the possibility for companies to get carried away

with the idea that having proprietary software for their internal processes can

give them a competitive edge. Given that any company can obtain software

with similar capabilities, it is probably best to use free software that can in-

corporate the developments made in other activities and tailor them to the

specific needs of the company.

2.2. Paradigms of software development

We said in the previous section that all of today's businesses need to use ICTs

and software in particular, but how can a company get the software it needs

for its production processes?

Additional reading

N.�Carr (1 April 2004).
"Does IT matter?". The
Economist. <http://
www.nicholasgcarr.com/arti-
cles/matter.html>

Based on the classification developed by Bruce Perens in "The emerging eco-

nomic paradigm of open source", we can sort companies as follows:

1) The Microsoft and Adobe model (Perens' "Retail" model), whereby a com-

pany develops software and sells it packaged to customers.

Required reading

B.�Perens (2005). The emerg-
ing economic paradigm of Open
Source. <http://www.uic.edu/
htbin/cgiwrap/bin/ojs/
index.php/fm/article/view/
1470/1385>

GNUFDL • PID_00145048 12 The software market

Thus, from their point of view, customers can forget about the development

of the software and simply buy it finished.

Consequences of the retail model

Naturally, this software development usually takes the form of proprietary software
(where the provider does not reveal the code to its customers). From the point of view
of somebody who purchases this software, the first obvious drawback is that it is not
designed for his/her specific needs (because, obviously, it has to be sold in a very uni-
form way in order to be of interest to a range of customers). Another potentially serious
problem is, as we mentioned earlier, the danger of being trapped by the provider, which
makes it difficult to switch to other software, retrieve certain databases, etc. Conversely,
but with similar consequences, there is the danger that the provider will disappear and
thus cease to provide the required software maintenance and improvement services.

2) The business model where the company that needs the software develops

it, either with the computer scientists on its staff or by hiring a specialist IT

company to develop it (Perens' "In-House and Contract"model).

In the last two models of development in Perens' classification, companies

seek out other companies with which they can collaborate to develop the

software they need.

3) In this model, the consortium develops a software that is not free (i.e. that

will not be available to companies that do not participate in its development).

4) In the last model, the consortium companies develop free software, i.e. with

a source code available to any other company, even if they are not involved

in its development.

This offers the clear benefit of being able to take advantage of improvements

in the community of programmers created around the project, thus reducing

development costs.

Of course, the development of the free software will not be free to the con-

sortium companies, which will need to finance an initial group of program-

mers. The danger of consortiums (both proprietary and for free software) is

that there is a lack of leadership in the development of the project because no

company wants to commit to guaranteeing its development, which creates a

barrier to its implementation (either from the start or when successive devel-

opments generate new expenses).

Development cost

Of course, this way of develop-
ing the software that a compa-
ny needs can be very expen-
sive, and can lead to repeat-
ing parts of programming that
have already been developed
and could have been used.

GNUFDL • PID_00145048 13 The software market

Summary

In our more immediate environment, a scenario is being shaped by multiple

business models converging with different policies to achieve their aims, from

the direct promotion of the product per se to the supply of products free of

charge to encourage customers to access a new world of complementary prod-

ucts and services.

The free software business uses the latter market form, setting up parallel and

complementary businesses based on its promotion. Nowadays, many compa-

nies and multinationals have adopted a clear stance in support of the devel-

opment of free software, especially considering that software is a basic product

for any business and that the free software development model offers guaran-

tees for securing these aims.

GNUFDL • PID_00145048 15 The software market

Bibliography

Karminski, D. (1999). "Core Competencies: Why Open Source Is The Optimum Econom-
ic Paradigm for Software". <http://www.doxpara.com/read.php/core.html> [Consulted in
February 2009]

Perens, B. (2005). "The Emerging Economic Paradigm of Open Source". Published in-
First Monday, Special Issue # 2, 3/10/2005. Cambridge: Cambridge University Press. <http:/
/www.uic.edu/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1470/1385> [Consulted in
February 2009]

Press

"Prince vuelve a enfurecer a la industria musical" (15 July 2007). El País.

"Star Turns, Close Enough to Touch" (12 July 2007). New York Times.

Software as a
business

Irene Fernández Monsalve

PID_00145051

GNUFDL • PID_00145051 Software as a business

© 2009, FUOC. Se garantiza permiso para copiar, distribuir y modificar este documento según los términos de la GNU Free
Documentation License, Version 1.2 o cualquiera posterior publicada por la Free Software Foundation, sin secciones invariantes ni
textos de cubierta delantera o trasera. Se dispone de una copia de la licencia en el apartado "GNU Free Documentation License" de
este documento.

GNUFDL • PID_00145051 Software as a business

Index

Introduction... 5

Objectives... 6

1. Business opportunities with software... 7

1.1. Service companies ... 8

1.1.1. Vertical specialisation .. 8

1.1.2. Horizontal specialisation ... 9

1.2. Development companies: to create products or to provide

services? ... 10

1.2.1. Need for initial investment ... 11

1.2.2. Maintaining the revenue stream 13

1.3. Hybrid models ... 15

1.4. Software as a service ... 16

2. Dominant companies in the sector... 18

3. Marketing in business: who to sell to? 21

3.1. Niche and mass markets ... 21

3.2. Patterns of technology adoption and the "chasm" 23

4. Function of the product: what to sell?.. 26

Summary.. 28

Bibliography... 29

GNUFDL • PID_00145051 5 Software as a business

Introduction

In this module, we will look at the "classical" view of software as a business.

We will focus on proprietary software, leaving the study of the further possi-

bilities of free software in this scenario for a later module. Although some of

the aspects that we touch upon will be irrelevant when it comes to the appli-

cation of free software strategies, others will still be valid to a large extent.

We will review some of the key factors to consider when designing a business

around software, such as the choice�of� the�main�activity and the general

approach of the company (selling products or services), aspects of selling and

marketing (how to choose our market and how to approach it), and the def-

inition�of�its�products�or�services (what type of products or services to de-

velop and how to position them).

GNUFDL • PID_00145051 6 Software as a business

Objectives

After completing this module, students should have achieved the following

aims:

1. To obtain a global vision of the business opportunities of software.

2. To learn about the traditional models of software companies.

3. To understand the economic features of and differences between product

companies and service companies.

4. To identify the key factors that software companies need to consider when

positioning their products on the market.

GNUFDL • PID_00145051 7 Software as a business

1. Business opportunities with software

Both individuals and corporate environments have software needs that gen-

erate multiple business opportunities.

The basic task involved in meeting these needs is to create this software, the

task of development per se. However, the needs to be met do not end here; this

is only the beginning. Once the product is made available, a number of relat-

ed needs arise, such as consulting, installation, configuration, maintenance,

support and training, for which certain customers (mainly other companies)

are willing to pay.

Throughout the process of technology adoption, from the identification of

needs to the decision to build or buy, right up to the end of the useful life

of the technology, multiple needs are generated that can be met by many

different companies:

Process�of�technology�adoption (based on Carlo Daffara. "Sustainability of FLOSS-Based economic models". II Open Source World Conference. Málaga. Available at:
http://www.cospa-project.org/Assets/resources/daffara-OSWC2.pdf)

Moreover, the process of software creation itself can be interpreted in two

ways: as the creation of a product or as the provision of a service. The choice

between the two will be critical for defining the company's operation and its

potential generation of revenue, which will result in very different business

models.

This choice – developing software as a product or a service – also reflects the

first issue that a company that consumes software will need to evaluate when

adopting a technological solution: whether to purchase a standard, packaged

product or to obtain a tailored development.

We can therefore distinguish between the following business activities in re-

lation to software:

• Application development

– As a product: standard solutions (shrink-wrapped)

GNUFDL • PID_00145051 8 Software as a business

– As a service: custom development

• Provision of services around one or more applications

– Consulting

– Selection

– Installation

– Integration

– Training

– Maintenance and support

– etc.

• Software as a service

This classification is intended to be neither exhaustive nor exclusive, that is,

many companies will implement hybrid models allowing them to provide

integral solutions to their customers.

The features of software companies and their business dynamics will vary

greatly depending on the activities that they focus on, as we shall see later,

but any of the models has the potential to generate both viable and highly

profitable businesses.

1.1. Service companies

As we explained earlier, companies can specialise in one or more aspects of

the chain of technology adoption and implement a number of activities at

the same time.

Hence, for companies that include various services in their business offer, we

can distinguish between two types of specialisation: vertical and horizontal.

1.1.1. Vertical specialisation

Broadly speaking, companies whose main activity is development will

tend to have a vertical�specialisation. If there business strategy is cen-

tred on custom development, their activities will naturally include oth-

er related services, such as installation, integration and training. How-

ever, as we shall see, companies that adopt the strategy of software as a

product will also do well to exploit associated services as a way to guar-

antee a steady flow of income.

 Package�1 Package�2 Package 3 etc.

Development X X

Vertical specialisation (based on Daffara. "Sustainability of FLOSS-Based economic models". II Open Source World Confer-
ence. Málaga. Available at: http://www.cospa-project.org/Assets/resources/daffara-OSWC2.pdf)

GNUFDL • PID_00145051 9 Software as a business

 Package�1 Package�2 Package 3 etc.

Installation X X

Integration X X

Certification X X

Training X X

Maintenance and support X X

Migration X X

Vertical specialisation (based on Daffara. "Sustainability of FLOSS-Based economic models". II Open Source World Confer-
ence. Málaga. Available at: http://www.cospa-project.org/Assets/resources/daffara-OSWC2.pdf)

Interestingly, a company that invests a certain amount of money in software

licensing expects to invest additional sums in related services, such as mainte-

nance and support, and in updates. Thus, selling products to business clients

will open the door to obtaining service contracts with the same clients and

hence, a more consistent flow of income over time.

1.1.2. Horizontal specialisation

In contrast, companies that exploit the needs generated by the general

use of software products will often offer services in a variety of packages,

focusing on one or more of the phases of the adoption of a technology.

 Package�1 Package�2 Package�3 etc.

Selection/Custom developments

Installation

Integration

Certification X X X X

Training X X X X

Maintenance and support

Migration

Horizontal�specialisation (based on Daffara. "Sustainability of FLOSS-Based economic models". II Open Source World Conference.
Málaga. Available at: http://www.cospa-project.org/Assets/resources/daffara-OSWC2.pdf).

Although some companies specialise in training or support, service companies

often touch on a number of the phases described, generating typologies such

as consulting (with an emphasis on selection, advice, and/or certification),

or integral solution providers, which cover all categories, including custom

developments and even the provision of hardware.

GNUFDL • PID_00145051 10 Software as a business

Companies that create GNU/Linux distributions use a service�provision�mod-

el�with�horizontal�specialisation.

These service-oriented companies often observe that their clients prefer to re-

ceive integral solutions and deal with a single technology solutions provider.

To be able to offer this comprehensive type of service, companies often need a

powerful infrastructure and technical capacity, which limits the entry of SMEs

as they are unable to meet every single need by themselves.

A common solution is for the service company to contract out the parts that

it cannot handle alone. Another very interesting solution is the "pyramidal

model of consulting" proposed by Daffara (Sustainability of FLOSS-Based eco-

nomic models), which we will now explain.

Generally speaking, computer support and maintenance can be said to follow

the 80/20 rule: 80% of queries are easy and can be resolved immediately. The

remaining 20%, however, are important problems and account for 80% of

the effort. Hence, a service SME could take care of a high number of clients,

dealing with 80% of their incidences and earning a reasonable amount for the

service. To solve the remaining 20%, it will require the technical services of

the software creation companies, who will obviously need to be paid more

than what the company receives from each client but less than what it earns

from all of these clients together.

This model will generate sustainable cooperation between the development

companies, with vertical specialisation, and the companies offering integral

solutions. The former will be able to reach more users through the horizontal

consulting firms, which will also mean a significant source of income. The

latter will be able to manage a large customer base and provide quality sup-

port for a range of products, maintaining a profitable business so long as the

customer base is big enough.

1.2. Development companies: to create products or to provide

services?

As we said earlier, a company that hopes to focus on development will have

two main options to choose from: it could generate standard�products, pack-

aged to sell to the mass market (shrink-wrapped, as they are called), or it could

generate custom�developments, tailored to the needs of individual clients.

The first option has the potential of generating large profit margins but they

will be difficult to maintain over time, and it has barriers to entry that could

prove unsurmountable. The latter is a far more labour-intensive option with

much lower profit margins, but it offers more possibilities of generating con-

stant sources of income over time and of being less sensitive to changes in the

macroeconomic environment.

Example of horizontal
specialisation

Canonical, creators of the dis-
tribution based on Debian
Ubuntu, perform a task of se-
lection and horizontal integra-
tion that encompasses a com-
plete operating system along
with several applications, with
the basic aim of providing a
distribution that is easy to use,
install and set up under the
slogan "linux for humans".
However, since Ubuntu is free
software, Canonical's income
comes from related services,
namely support, training and
certification.

Recommended website

For more information about
the "pyramidal model of
consulting", see: http://
www.cospa-project.org/
Assets/resources/daffara-
OSWC2.pdf)

GNUFDL • PID_00145051 11 Software as a business

We will now describe the differentiating features of these two options in detail.

Economies�of�scale�and�the�possibility�of�large�profit�margins

The economic process of software creation has special features not seen in

other industries, affording it huge positive�returns�to�scale.

On the one hand, commercial companies need to invest large sums of money

in development before they can create a commercial version of a product to

release, and they must often invest again every two or three years to main-

tain a constant flow of income. Since the aim of this development is to gen-

erate a standard product, it is very risky because there is no certainty that the

investment will be recovered later through sales. However, once they have a

finished product, the marginal cost of each additional copy sold is next to

nothing. The first copy of the software created is very expensive, but the rest

costs virtually nothing.

This leads to huge economies of scale on the supply side, which combine with

significant economies of scale on the demand side: both due to the time in-

vested in acquiring the skills to use an application and the possible incompat-

ibility of formats, switching from one product to another is a difficult and ex-

pensive task. As a result, the bigger the user base of a product, the easier it is for

this base to grow and survive over time. In the software market, then, we can

come across "winner takes it all situations", where huge profits are generated

and the entry of new companies to these markets is simultaneously blocked.

Examples of companies that generate standard products

The companies that have exploited these large economies of scale include some of the
giants of the software industry, such as Microsoft, which tops the desktop operating sys-
tems market, and Oracle, with its purchase of PeopleSoft in 2005. However, there are
small companies too, known as independent software vendors (ISV), that produce feasi-
ble businesses by exploiting specific niches. Examples include Pretty Good Solitaire, de-
veloped by the two-staff micro-enterprise Goodsol�Development�Inc. (one of the most
popular solitaire games), and HomeSite, a HTML editor developed by the Bradbury Soft-
ware micro-enterprise in 1995, which was purchased by Allaire Corp. (Allaire was later
purchased by Macromedia, which, in turn, was absorbed in 2005 by Adobe).

In contrast, a company that engages in custom development will not have

access to the economies of scale of standard software. Every new customer

will require a specific development, making it a costly investment in time and

effort, although this type of company does tend to reuse its developments

where possible.

1.2.1. Need for initial investment

When we set up a company based on the traditional product idea, we come

across an important problem: the need�for�initial� investment. During the

early stages of the company, dedicated to development, there will be no in-

come flow, but there will be expenses until the first versions of the software

are ready for release. Besides the expenses deriving directly from development,

Required reading

M.�Cusumano (2004). The
Business of Software (Chapter
1, "The Business of Software,
a Personal View").

GNUFDL • PID_00145051 12 Software as a business

we need to take into account the necessary expenses of marketing and sales.

There are two solutions to this problem: obtain�external�investment, or�start

another�type�of�business�activity that generates sufficient income to allow

for simultaneous development of the product.

Custom�development�companies entail much�less�risk and can start

their activity with a much smaller investment (development only be-

gins once a contract is signed), thus avoiding the need to search for

outside investors.

The financial literature tends to focus on the discussion of companies that

finance their development from venture capital investments since they are

more attractive. This type of financing allows for faster growth, which is an

important factor in success according to Cusumano. (Michael Cusumano, The

Business of Software)

Reflection

At this point, we can consider the following: what parameters do we use to judge the
success of a business initiative? Investors and financial publications consider a successful
company to be one that manages to make a profit every year, and probably those that
display growth too. A company that remains the same size with an income statement
showing no profit will not attract the attention of investors or the financial literature.
However, a company of this nature may have been very successful in creating quality
jobs and maintaining them over time. For many entrepreneurs, this can be the main aim.

Obtaining sufficient outside investment can be an insurmountable obstacle

and, even when it is possible, it has certain disadvantages that we need to take

into account. The presence of investors will put pressure on the management

decisions of the company, as it will have to generate sufficient profits to repay

the investment and make gains. This situation will limit the autonomy and

decision-making capacity of its founders.

The other option is not straightforward either. The company would have to

redirect its business to services in an attempt to generate sufficient revenue

from them to allow for the simultaneous development of the product. As we

shall see later, it is difficult to be successful in this through the provision of

services because the profit margin is smaller. Moreover, the lack of economies

of scale and the presence of competition restrict the possibility of keeping

prices high enough.

In this context, free software emerges with new features to alter the sce-

nario. The possibility of cutting�costs through the collaboration of vol-

unteers, together with the new schemas of distribution and marketing

offered by this collaboration constitute a relevant disruption of these

scenarios and have the potential to significantly reduce the initial in-

vestment required.

GNUFDL • PID_00145051 13 Software as a business

We will look at these aspects in more detail in the following modules.

1.2.2. Maintaining the revenue stream

One of the basic questions that any company needs to ask is not only how to

raise revenue at a given moment, but also how to maintain it over time. While

continuity will be the norm for companies that focus on providing services

(generally, if clients are satisfied, they will continue to need the services), in

companies that focus on the production of standard solutions, the mainte-

nance of a steady stream of income will be fraught by a range of problems.

1) Software cycles

Cusumano, in The Business of Software, compares the process of writing a suc-

cessful software product to writing a best-seller. Doing so will generate huge

profits but it is also very difficult and only occasionally generates the latter.

The natural life cycle of a commercial software product will eventually cause

it to lose the ability to generate income.

Initially, early versions will have several flaws and their functionality will not

be finely tuned to the needs of users. This will allow the company that creat-

ed it to maintain its income over time with the launch of new versions that

gradually incorporate improvements into the product, both through debug-

ging and by obtaining much more information on requirements from user

and customer feedback.

Predictably, if new versions of the product contain sufficient improvements

and are more attractive than the previous ones, they will continue to gener-

ate revenue. However, once users decide that the application is good enough,

their motivation to pay for a new version will wane. Similarly, trying to main-

tain the income obtained from a best-seller with sequels has only limited ef-

fectiveness.

There are strategies to combat these trends and maintain a stream of revenue

through the licensing of successive versions, typically at the expense of con-

sumers. The total or partial incompatibility between successive versions of the

product, coupled with intensive campaigns to publicise it, will lead to a new

situation of economies of scale on the demand side in favour of the latest ver-

sion, which will force many users to change even though the previous product

met their needs.

However, due to the nature of some software products, constant updating is

necessary due to changing user needs.

GNUFDL • PID_00145051 14 Software as a business

An illustrative example: accounting, labour and tax management
applications.

Tax and labour legislation changes often, which means that users need to update their
application every time this occurs. As a result, revenue can be kept constant over time
because of cyclical adjustments in the financial system and legislative framework.

In addition, once the initial idea has been exploited and studied, it will pave

the way for other companies to start producing similar software without hav-

ing to spend time on R&D or requirements analysis. If they can make the

product more quickly, perhaps streamlining it and maintaining only the basic

features, they will be able to compete for the same market at a better price.

Once enough companies enter this market, generating products that can be

interchanged with one another ("commoditisation"), we reach a unique situ-

ation: in the absence of other differentiating factors, consumers will buy the

cheaper product, which will generate a highly competitive situation.

This phenomenon is common to any type of product and should also be pos-

sible with software. However, certain factors protect the dominant companies

in this process, which would ideally lead to greater technological diffusion and

bring benefits to users (albeit making it more difficult for companies to obtain

large profit margins). As explained above, there are some strong economies of

scale on the demand side so it will not be as easy for users to consider compet-

ing products as true replacements. Moreover, the use of proprietary formats

creates an important captive situation that is difficult to escape from.

Hence, free software emerges as a driving force for a situation in which free

goods�are�perfectly� interchangeable: the appearance of a similar product

that is distributed freely or even free of charge makes it more difficult to main-

tain high revenues from licensing and may be one of the few ways to break

the captive inertia generated by proprietary software.

Free�software�as�disruptive�technology

The term disruptive technology, coined in 1999 by Clayton M. Chris-

tensen, refers to innovations that, for their low price and features or due

to their focus on a new type of customer, manage to displace the previ-

ous market solutions. Free software could thus constitute a disruptive

technology, given the possibility of obtaining it for free and its ability

to contribute to the widespread use of software through existing tech-

nology gaps.

Though it would considerably limit the possibility of maintaining high profits

from licensing, the transformation of the software industry into a scenario of

interchangeable goods (commoditisation) could open up new markets, gen-

erating an ecosystem of needs around the new interchangeable and widely

adopted product.

GNUFDL • PID_00145051 15 Software as a business

2) Dependence on economic cycles

Traditional software companies with their product focus can generate huge

profits but also suffer major losses during unfavourable economic cycles. De-

spite being consolidated businesses with established products, between 2000

to 2002, many software companies lost 80 to 90% of their value; even Mi-

crosoft lost two thirds of its value (Michael Cusumano, The Business of Soft-

ware).

During adverse economic periods, consumption falls and software products

are the first to feel the effects. Users simply stop buying software, which can

have a serious effect on the product companies that depend entirely on this

source of income. Consequently, it is difficult to find a product company sole-

ly of this nature, as the guarantee of its income would be too precarious and

unpredictable, and would inevitably suffer in harsh times.

Although any business activity will be affected in such scenarios, companies

focusing on services are more capable of maintaining their income due to their

long-term contracts and clients – who are mainly other companies and, albeit

to a lesser extent, will still need to maintain their infrastructure. In many cas-

es, these infrastructures allow the client company to operate more efficiently,

thus increasing its chances of survival in difficult times. As a result, it contin-

ues to spend on new technology services.

1.3. Hybrid models

In actual fact, there are many hybrid models that combine the sale of standard

products and the provision of services to varying degrees in an attempt to

reconcile the two trends. We can consider that the degree to which a company

leans towards products or services is indicative of its own life cycle, and there

is a widespread trend of a transition to services.

Example of a hybrid company

Consider a company that starts with a pure product model, obtaining high sales and
large profits, but which discovers that it is going to be difficult to maintain this level
of income. To ensure its continuity or in response to difficult economic times, it may
begin to arrange service contracts with some of its customers, witnessing a significant
slowdown in the company's rate of growth but obtaining greater long-term stability. The
company may eventually put its entire emphasis on to services, having already saturated
the market of its original product.

Of course, this is merely a theoretical example, and many companies will not

complete or even begin this cycle at the same point.

Furthermore, the transition to services is not an easy one and can have nega-

tive consequences if not done carefully. Adopting a hybrid model in response

to a crisis, without carefully considering the business strategy, can cause many

problems for a product company.

GNUFDL • PID_00145051 16 Software as a business

In times of lack of revenue, the company may cede to pressure from different

customers to develop highly specific product adaptations that are difficult to

integrate with the main standard product. If this practice becomes widespread

and the company intends to maintain its revenue through the sale of the

standard product, it may encounter difficulties in maintaining compatibility

between the new versions released and the specific adaptations for different

customers. The work of debugging and development will multiply and can

sometimes generate more expenses than revenue for the business.

1.4. Software as a service

The concept of "software as a service" (SaaS) originated in 1999 as a new way

to implement software with an emphasis on functionality.

The basic approach of this idea is that software is important to users

insofar as it allows them to solve a problem, i.e. to the extent that it

provides them with a service.

Under this paradigm, the need to acquire a software product, have a related

hardware and software infrastructure and the installation and support that

this requires would be little more than a hindrance to the end user, who has

to put up with them in order to obtain the desired functionality.

Under a software as a service model, all of these problems disappear and the

software changes from being a product that can be acquired to becoming a ser-

vice that can be provided. In this sense, it is important to distinguish between

the service companies that we described earlier, which provide�software�ser-

vices (installation, maintenance, etc.), and this new model, which provides

software�as�a�service (provision of the specific functionality of this software).

To implement this concept, the provider would take care of all the necessary

infrastructure, hosting the required software and offering the service on-line

through a browser. A sufficiently powerful communications infrastructure is

required but the other technological requirements on the receiver side of the

service are reduced, allowing the attention to be focused entirely on the func-

tionality offered.

The software as a service model is a low-cost way of providing software to

companies, in comparison with the traditional method of selling products. On

the one hand, customers save considerable sums on IT infrastructure mainte-

nance and, on the other, providers can offer lower prices because they com-

bine the recurring revenue obtained from the provision of a service and use a

single instance of their application at any one time to service a large number

of customers.

Providing software as a
service

More and more compa-
nies are using this model
to provide enterprise soft-
ware, such as 37signals with
Basecamp (project manage-
ment tool), and the popular
Salesforce.com (CRM or cus-
tomer relationship manage-
ment), which allows the soft-
ware to be tailored to cus-
tomer needs.

GNUFDL • PID_00145051 17 Software as a business

The presence of both free software and SaaS offers is threatening traditional

software vendors, who are feeling the pressure with the entry of these new

competitors and will have difficulty maintaining the prices of their products.

Software as a service providers also stand to gain a great deal from the use

of free software. On the one hand, using it in their software infrastructure

will save them significant sums in licensing or development and, on the oth-

er, some companies are using free, GPL-licensed applications to develop their

critical business applications, keeping their modifications closed as a way to

protect their business differentiation. In this case, they are exploiting a loop-

hole in the GPL: modifications of the code must only be redistributed if the

program is redistributed. In the case of software as a service, only the func-

tionality – not the code – is redistributed, so the company has no obligation

to share its improvements.

On-line software

We can also find several ex-
amples of web applications
aimed at private consumers,
although this trend is referred
to as "Web 2.0". Many have
had great success, such as the
numerous Google applications
and e-bay.

GNUFDL • PID_00145051 18 Software as a business

2. Dominant companies in the sector

As we have seen, orienting a business towards products or services will gener-

ate very different business dynamics although both approaches can generate

profitable business models. Nonetheless, it will be very difficult to keep pure-

product companies alive and the barriers to entry will be substantial.

The "Software 500" survey of "Software Magazine" (www.softwaremag.com),

which produces an annual ranking of the top 500 commercial software com-

panies by revenue, shows that both types of company discussed here can be

found among the most profitable companies.

However, of the top twenty, only four have a marked product focus with ser-

vices representing less than 30% of their total business: Microsoft Corporation,

Oracle, SAP and Symantec, which offer leading products in their sectors to

corporate customers and mass markets (desktop operating systems, databases,

ERP and security, respectively).

Two companies, Lockheed Martin Corporation and EMC Corporation, have

a 50% balance between products and services. Of the remaining companies,

ten state that their primary business sector is integration, consulting, and out-

sourcing services, while the rest, although dedicated to the development of

specific products, derive their income primarily from the provision of related

services.

GNUFDL • PID_00145051 19 Software as a business

Top 20 companies in the software industry and their main business (prepared using the 2007 "Software 500" study. http://www.softwaremag.com/SW500/

GNUFDL • PID_00145051 20 Software as a business

The following figure illustrates the current positioning of these and other soft-

ware companies by approach (application, infrastructure, services) and the

type of customers they target (business or domestic consumers).

Positioning�of�the�leading�software�companies (with market capitalisation in excess of $50 million and listed on the stock exchange). John
Prendergast (2008). "Can Xensource, MySQL or Jboss tell you anything about your company's prospects?". Open Source Business Conference. Available at:
http://http://akamai.infoworld.com/event/osbc/08/docs/CEO-CMO-Prendergast.pdf)

GNUFDL • PID_00145051 21 Software as a business

3. Marketing in business: who to sell to?

Thus far, we have looked at several aspects of the basic nature of software

companies and the definition of their core activities. However, another fun-

damental aspect that any company needs to ask itself is what to sell and who

to sell to.

3.1. Niche and mass markets

For any company with strong economies of scale, as is true of software product

companies, the bigger the user base, the higher the profit margin. Therefore,

the seemingly more lucrative option would be to aim its products at mass

markets.

However, a strategy like this can be fraught with difficulties: the mass mar-

ket will be more closely analysed, controlled and saturated by the big corpo-

rations. For a company that is just starting out, it will be extremely difficult

to compete with companies that are already established and dominant in the

sector, and which will also have a large capacity for marketing and diffusion.

It will be easier to meet the needs detected in niche�markets, which are

unattractive to large companies due to their size. For large companies, the po-

tential returns from these markets are too low given the small number of cus-

tomers, but they will be more than sufficient for a small business. The number

of potential niches is vast and there are numerous factors on whose basis we

can segment and identify a market. The key question here will be how many

potential consumers will this niche provide, as this will allow us to calculate

the volume of business and hence, the volume of expenses that the company

can afford.

Software offers more interesting possibilities than other tangible products in

niche markets because of the absence of geographical barriers with the Inter-

net. A niche detected in a given geographical area may be relatively easily

extrapolated to other areas with similar needs or even be extended by itself,

without the need for special efforts from the marketing company.

GNUFDL • PID_00145051 22 Software as a business

When we create products for niche markets, it is essential to know this partic-

ular environment very thoroughly. Besides technical skills, we need to have

an excellent knowledge of the activities, priorities and modus operandi of the

niche in question. Following Eric Raymond's rule, "Every good work of soft-

ware starts by scratching a developer's personal itch", it is useful to start with

a niche that we form part of, in order to better understand what needs and

problems lie within it.

Another important factor to consider is whether the product is going to be

sold to corporate environments, small businesses or individuals.

Service companies should focus on corporate environments, governments and

other organisations because private consumers rarely pay for software-based

services. Product companies, however, may choose the prospective clients of

the target market based on the features of their products and their business

strategy. Corporate customers may be more attractive because they are more

willing to pay for a software product and will also contribute to the generation

of revenue through services.

Knowledge of the
environment

This is the case of the soft-
ware developers' niche: it is
a well-covered and exploited
ground, since every program-
mer is both a creator and user
with an intimate knowledge of
the needs and problems of the
sector.

In the corporate environment, companies will pay for a software product, but

they will also pay for support, training, installation and integration of the

product into their existing systems. Companies that purchase software gener-

ally pay 15% to 25% of the price of the licence in annual maintenance fees

(Dan Woods, Gautam Guliani, "Open source for the enterprise"). They also

often seek custom developments to tailor the product to their specific needs.

Thus, corporate customers will help software companies to generate revenue

from services, giving them more guarantees of continuity. However, these new

revenues will be more labour-intensive and the company will require careful

management to ensure that the costs of providing the service do not exceed

the income generated through it.

Moreover, support services are often offered for specific product versions, so

maintaining services relationship can also help with the generation of rev-

enue in the form of licences for successive versions: although clients have no

interest in purchasing the new version, they will be obliged to do so because

support for the older version is no longer provided.

The downside is that major corporate clients will be reluctant to hire the ser-

vices of a small, new company. One of the key factors in hiring is the reputa-

tion and trust generated by the company providing the services, so smaller

firms or those that have just started up will find it easier to obtain clients of a

similar profile, i.e. small and medium-sized companies.

Recommended reading

D.�Woods;�G.�Guliani
(2005). Open source for the en-
terprise: managing risks, reap-
ing rewards. O'Reilly Media,
Inc.

GNUFDL • PID_00145051 23 Software as a business

3.2. Patterns of technology adoption and the "chasm"

Detecting a market niche and creating a good product that meets the

needs of the group of potential users is not enough to obtain accep-

tance. To introduce a new product or service, it is essential to take into

account the patterns of technology adoption in a group of individuals.

Marketing books traditionally outline a model of adoption based on a Gaus-

sian curve with four groups of users:

• Innovators�and�early�adopters: these like technology and innovation.

They often adopt a certain product simply because it is new.

• Early�majority: these adopt a technology only if it helps them to solve

a particular problem.

• Late�majority: these try to avoid new technologies.

• Laggards: these are the last to try something new or may never get to try it.

The curve represents two key ideas: the two intermediate categories cover the

vast majority of potential�customers, and we can only attract the groups in

order from left to right (early adopters will adopt it if the innovators have

already done so, the early majorities if the innovators have, the late majorities

if the early majorities have, and the laggards if the late majorities have).

Geoffrey Moore in his Crossing the Chasm renames these groups, calling them

technology�enthusiasts, visionaries, pragmatists, conservatives and skep-

tics, and argues that the theory is flawed because the transition between

the enthusiasts and pragmatic majorities is not continuous and difficult to

achieve. The early majorities will not adopt solutions that have not been ex-

tensively tested but they will adopt those that obtain good references from

other pragmatists, so reaching them may sometimes seem like an impossible

task. For Moore, there is a chasm between the two groups, so he redraws the

curve as shown:

GNUFDL • PID_00145051 24 Software as a business

Curve of technology adoption according to Moore

Innovators and technology enthusiasts have a high�tolerance�for�risk and the

flaws of the new technology because they already have significant technical

skills. These users will adopt a technology on the basis of the pure functional-

ity they reveal when seeking innovation. The early and late majorities (prag-

matists and conservatives) have a low�risk�tolerance and will be interested in

purchasing a product if it increases their productivity but only if it is highly

stable and mature.

Thus, an innovative product can be a major success among innovators and

technology enthusiasts, but if the creator wants to expand its customer base, it

will need to launch a separate marketing campaign, focusing not on the spe-

cific features and enhancements of the product, but on generating confidence

in it, describing success stories and previous implementations, and indicating

numbers of users.

Gaining our first customers in the group of pragmatists and keeping them

happy is essential but very difficult, given the vicious circle created: none will

adopt a solution not previously tried by other pragmatists.

Confidence can be built by offering integral solutions, which include main-

tenance, support and training, to attract customers that are sensitive to the

stability and user-friendliness of the product. The first customers in this group

must be treated with care, with no time or money spared, as they will be the

benchmark for the rest. Once we have gained a few benchmark pragmatists,

attracting the rest will be a much easier task, and once the pragmatists have

adopted the solution, the conservatives will follow without the need for great

marketing efforts.

Concentrating on innovators and enthusiasts – on the assumption that, de-

spite being a small potential market, it will be sufficient for a small business –

can be dangerous because this group is inherently unstable and will abandon

a product as soon as it ceases to be new.

GNUFDL • PID_00145051 25 Software as a business

This adoption curve will also mark the life cycle of the product, together with

its dynamics of development and marketing practices. The marketing compa-

ny needs to be clear on the stage it is at and who its customers are at that time,

since each group is attracted by very different factors. While adding many new

features and maintaining an evolving product will attract innovators, conser-

vatives need the product simply to work in specific scenarios and for it to al-

ways do so in the same way. Every change will be a hurdle that they will only

be prepared to face if it solves a problem they have.

GNUFDL • PID_00145051 26 Software as a business

4. Function of the product: what to sell?

Careful consideration of the type of product to develop is very important. One

of the questions we need to ask is whether the product is intended to be an

industry leader, follower or a complementary product.

Although being the industry leader may seem more attractive at first, it may

not be the most effective approach. When it detects a lack of functionality

in a product with widespread adoption, a company has two options: develop

its own version with the missing functionality and try to compete with the

leader, or build an add-on to complement the possibilities of the leader.

The first option will prove very complex and can easily fail, as it requires a

substantial investment not only in the new development but also in the mar-

keting campaign and subsequent sales. In the second, besides the possibility of

developing the product in less time, much of the marketing will have already

been done by the leader, so it will be much easier to secure adoption of the

add-on. Moreover, conservative users (the majority) will be much more will-

ing to incorporate an add-on to a known and proven solution than to change

technology and supplier. A common danger is that the leader may decide to

incorporate the developed functionality into its core product, thus eliminat-

ing the need to purchase the add-on. In this respect, the relationship with the

developer of the core product will be essential.

Consequently, it is important to define the role played by other companies

active in the sector: which will be direct competitors, which will be partners

and which, although in the same sector, will not compete with our product

because they have a specific specialisation. By segmenting niches and offering

differentiation, we can avoid direct competition from strong companies, and

the existence of companies that produce related products or services may be

an important factor in our success.

When positioning a product, it is also important to consider the platform that

it is being developed for, i.e. which basic set of software will be required to run

the product. Consider, for example, the choice of operating system and related

technology with which the application will run. This decision will affect the

definition of the niche market to be exploited and the type of customer it

could be aimed at, but it will also be important for defining our relationship

with allies and competitors.

An application designed to run on a particular platform will be a complemen-

tary application for that platform. If it is a software package already established

on the market and widely accepted, we will also expand the potential market

of our customers but reduce the chances of finding allies among the develop-

GNUFDL • PID_00145051 27 Software as a business

ers of the platform. The value of these platforms will be largely determined by

the number and diversity of applications that can be run on it, so a company

trying to establish itself as a platform leader will be very interested in the de-

velopment of related applications and will hence be a more willing ally.

However, although it is more difficult, it may be better for the company to

position itself as leader of a given sector. The question in this case will be

whether to try and create a new product category for an untapped niche or

whether to try and push out an existing product.

Segmentation�and�potential�customers

For a modest company, the only possibility might be to segment the market until it
finds a particular niche in which to position itself. It may be difficult to position oneself
as leader in enterprise resource planning applications (ERP), but it could prove easier
to develop an ERP for SMEs or for hotel and catering SMEs. Naturally, as we segment
further, the competition will decrease, but so too will our potential customer base.

Topping a given market will undoubtedly generate advantages when it comes

to positioning oneself as leader and defining the standards that this technol-

ogy will be based on, but it offers no guarantees. The industry leader is not

always the first company to develop a given technology. Sometimes, arriving

first and attracting technology enthusiasts can give a false impression of suc-

cess, since the product must reach the majorities before a company can be-

come the leader. Subsequent strategic and technological decisions will be crit-

ical in determining whether the company can capitalise on economies of scale

on the demand side to position its product in the number one slot of its sector.

Breaking on to a market that already has a leader will take sales and marketing

campaigns that are often outside the scope of recently formed companies.

However, the use of a free software product, which competes with a price of

zero, can be a sufficiently powerful disruptive agent. In future modules, we

will see this and other strategies available to free software for competing on

different markets.

GNUFDL • PID_00145051 28 Software as a business

Summary

Software needs generate numerous business opportunities throughout the life

cycle of the software, from development per se to related services such as in-

stallation, migration and user training.

Corporate positioning is key to identifying business opportunities:

• A service orientation provides a more stable economic framework over

time.

• An orientation towards product development creates a product economy

that is more difficult to maintain over longer periods.

• Hybrid models attempt to guarantee a balance between the above two

models.

• The emergence of software as a service is a threat to more traditional mod-

els because it offers a more versatile variation for potential customers.

In addition, the exploitation of market segments that are close and familiar

can help the business strategy of a new business and with the adaptation of

the product to the patterns of technology adoption of the target market.

Lastly, it is also necessary to clearly establish the relationship between the

business and its competitors and between its product and that of its competi-

tors. These relationships may even encourage the introduction of the product

on to the target market.

GNUFDL • PID_00145051 29 Software as a business

Bibliography

Christensen, C. M. (1997). The innovator's dilemma. Harvard University Press <http://
books.google.es/books?id=SIexi_qgq2gC> [Consulted in April 2009]

Christensen, C. M.; Raynor, M. E. (2003). The innovator's solution. Harvard University
Press. <http://books.google.es/books?id=ZUsn9uIgkAUC> [Consulted in April 2009]

Cusumano, M. (2004). The Business of Software Free Press. Cam-
bridge: Cambridge University Press. <http://books.google.com/books?id=7KAW-
ToDnBAC&dq=the+business+of+software&hl=es> [Consulted in February 2009]

Daffara, C. (March 2006). "Sustainability of FLOSS-based economic models". II Open
Source World Conference. Málaga. <http://www.cospa-project.org/Assets/resources/daffara-
OSWC2.pdf> [Consulted in April 2009]

McKenna, R.; Moore, G. (2006). Crossing the chasm Capstone. <http://books.google.com/
books?id=GTwFAQAACAAJ&dq=crossing+the+chasm&hl=es> [Consulted in February 2009]

Sink, E. (2006). Eric Sink on the Business of Software
Apress. New Jersey: Princeton University Press <http://books.google.com/
books?id=h5IQuengOGIC&dq=eric+sink+business+of+software> [Consulted in February
2009]

Business models
with free software

Irene Fernández Monsalve

PID_00145049

GNUFDL • PID_00145049 Business models with free software

© 2009, FUOC. Se garantiza permiso para copiar, distribuir y modificar este documento según los términos de la GNU Free
Documentation License, Version 1.2 o cualquiera posterior publicada por la Free Software Foundation, sin secciones invariantes ni
textos de cubierta delantera o trasera. Se dispone de una copia de la licencia en el apartado "GNU Free Documentation License" de
este documento.

GNUFDL • PID_00145049 Business models with free software

Index

Introduction... 5

Objectives... 6

1. Characterising business models with free software................. 7

2. Classifications according to different authors.......................... 8

2.1. Hecker and Raymond classifications .. 8

2.2. European Working Group on Libre Software 10

2.3. Empirical studies ... 11

2.4. Proposed classification .. 14

3. Business models with free software... 16

3.1. Specialist/vertical (a free application as the main product) 16

3.1.1. Mixed models: dual licensing 17

3.1.2. Mixed models: free product kernel and proprietary

accessories .. 20

3.1.3. Free models: "distributed sale" of the product 22

3.1.4. Free product plus associated services 24

3.1.5. Software as a service .. 26

3.2. Services associated with free software .. 27

3.2.1. Platform distribution companies 30

3.2.2. Large integrators .. 33

3.2.3. Software services: small and micro-enterprises 34

3.3. Ancillary markets: hardware ... 37

3.4. Other ancillary markets .. 39

Summary.. 41

Bibliography... 43

GNUFDL • PID_00145049 5 Business models with free software

Introduction

In the previous modules, we looked at the software market, the traditional

types of company in the sector and the possibilities offered by free software

in this framework. In this module, we will study the most common business

models built around free software, together with some specific cases.

There can be no doubt that free software is emerging as a key element of

new business models. After the bursting of the technology bubble (popularly

known as the dot-com bubble) at the turn of the decade, free software has

driven the creation of new companies in the technology sector, attracting in-

creasing amounts of venture capital. In 2004, a total of $149 million was in-

vested in 20 new companies. In 2006, this amount had risen to $475 million,

distributed among 48 business initiatives.

Established and consolidated companies, such as Red Hat or MySQL, have

been joined by a new generation of numerous companies whose strategies

focus on the use and development of free software. Over the coming years,

we will witness the real development of these new businesses and see whether

their business model proves sustainable in the long run.

First�generation Second�generation Third�generation

Publicly�traded:
Red Hat, Caldera (now SCO), VA Linux
(now VA Software), Turbolinux
Taken�over:
SUSE, Cygnus
Other:
LynuxWorks, Linuxcare (now Levanta),
Sendmail

Publicly�traded:
Trolltech, Sourcefire, Mandrakesoft (now
Mandriva)
Taken�over:
Conectiva, Lycoris, JBoss, Sleepycat, Ximi-
an, Gluecode
Other:
MontaVista, MySQL, Zend

ActiveGrid, ActiveState, Alfresco, BitRock,
Black Duck, CollabNet, Collax, Compiere,
Covalent, DB4O, Digium, Exadel, eZ Sys-
tems, Fonality, Funambol, Groundwork, Hy-
peric, Ingres, Interface21, JasperSoft, Joom-
la, Laszlo Systems, Medsphere, Mozilla Corp,
MuleSource, OpenBravo, OpenLogic, Open-
Xchange, OTRS, Palamida, Pentaho, rPath,
SnapLogic, Sourcelabs, Spikesource, SQLite,
WebYog, SugarCRM, Talend, Terracotta,
Ubuntu/Canonical, Vyatta, WSO2, Xen-
Source, Zenoss, Zimbra, Zmanda, etc.

Business models with free software: success stories. Table and investment data taken from Marten Mickos (2007). "Open Source: why freedom makes a better business model". Open
Source Business Conference (OSBC). http://www.osbc.com/live/images/13/presentation_dwn/Keynote-Open_Source_Why_Freedom.pdf)

In this module, we will study some of the businesses listed in the table above,

along with others that are still significant even though they do not attract

much attention due to their small size. We will look at the advantages of the

free software they exploit, the problems that they have encountered and how

they have resolved them. We will also examine various taxonomies to charac-

terise these models and try to identify diverse key factors that determine the

operation of the company according to different authors.

Recommended reading

For more information, see:
Larry Augustin (2007). "A
New Breed of P&L: the Open
Source Business Financial
Model". Open Source Business
Conference (OSBC).
http://www.osbc.com/
live/images/13/
presentation_dwn/A_New_
Breed_of_P_and_L.pdf

GNUFDL • PID_00145049 6 Business models with free software

Objectives

After completing this module, students should have achieved the following

aims:

1. To understand the main classifications drawn up to date for free software

models.

2. To know the current business models based on free software.

3. To understand the different mechanisms for revenue generation and dif-

ferentiation exploited by these models.

4. To be capable of analysing how the different companies use free software

to create a competitive advantage.

GNUFDL • PID_00145049 7 Business models with free software

1. Characterising business models with free software

When we talk about business models based on free software, we are often re-

ferring to the new and ingenious ways of earning income that are being im-

plemented, since the traditional model, the selling of a proprietary product, is

no longer so clear cut. Companies, in contrast to individuals, need to consider

an important factor when they take part in a free software project: how to

obtain the economic return that will justify their investment.

In previous modules, we saw how the idea that the income generated by soft-

ware is directly related to its sale is not an accurate picture of the reality. Most

software is developed internally and the sale of software is only the main

source of income for a handful of companies. In most cases, it is necessary

to offer complementary services to ensure the continuity of income and the

survival of the business in harsh times.

Moreover, in the article by Perens that we looked at in the second module

("The Emerging Economic Paradigm of Open Source"), we saw that free soft-

ware offers much better economic prospects (cost and risk) than the propri-

etary alternatives for companies that need to develop non-differentiating soft-

ware.

In all events, this module will show how different companies manage the

intellectual property of their products, also generating mixed�models in an

attempt to reconcile the advantages of free models with the generation of

direct financial returns based on intellectual property. In this case, the choice

of licence will largely determine the range of business models that a company

can implement.

Recommended website

For more information on
Perens:
http://www.uic.edu/htbin/
cgiwrap/bin/ojs/index.php/
fm/article/view/1470/1385

GNUFDL • PID_00145049 8 Business models with free software

2. Classifications according to different authors

In this section, we will study the various attempts to classify business models

in literature, pausing to look at the factors that each author has considered

crucial for the grouping of the different models. In addition to more theoreti-

cal approaches, we will look at those based on observing existing businesses in

a more qualitative way and a quantitative methodology for the classification

of business models in the context of the FLOSSmetrics�project. Lastly, we will

propose a taxonomy of our own that combines all of the proposals discussed.

2.1. Hecker and Raymond classifications

One of the first authors to write about the business prospects of free software

was Frank Hecker in 1998 with "Setting Up Shop: The Business of Open-Source

Software". In his article, he takes four OpenSource.org categories and adds

others, analysing them on the basis of:

• Which companies implement this model?

• What types of licence are appropriate?

• What opportunities for differentiation does the model offer?

• What opportunities does the model offer to set prices based on perceived

value rather than on actual costs?

The table below summarises this classification, adding another characterisa-

tion parameter, which, though not expressly mentioned by Hecker, is a key

feature: how is the company revenue generated?

Model Source�of�revenue Type�of
licence�

Opportunities�for
differentiation

Price�opportuni-
ties�based�on�per-
ceived�value�vs.�costs

Cases

Support sellers Sale of related services
(covers all types of ser-
vices, from custom devel-
opments to training, con-
sulting, etc).

GPL Quality, price, and simpli-
fying and improving the
user experience.

Limited.
Possible if it has a good
reputation.

Cygnus So-
lutions
Red Hat
Caldera

Loss leader Sale of other proprietary
products

BSD or
Mozilla

Based on the product. Possible. Sendmail
Netscape

Widget frosting Sale of hardware Based on hardware: func-
tionality, performance,
flexibility, reliability, cost...

Limited. The hardware
pricing system is typically
based on costs.

Corel
VA Linux

Summary of classification of business models ("Setting up shop: the business of open source" Hecker, 1998)

Recommended website

For more information, see:
http://hecker.org/writings/
setting-up-shop

GNUFDL • PID_00145049 9 Business models with free software

Model Source�of�revenue Type�of
licence�

Opportunities�for
differentiation

Price�opportuni-
ties�based�on�per-
ceived�value�vs.�costs

Cases

Accessorising Sale of physical products
(books, etc).

Product quality (books,
etc.) and loyalty from
"pro-free software" users.

Limited. Brand reputa-
tion can allow prices to be
raised slightly.

O'Reilly &
Associates

Service enabler Sale of on-line services
provided by the program

GPL or
Mozilla

Back-end attributes, cre-
ation of unique and useful
services.

Possible if a unique and
inimitable service is creat-
ed.

Netscape

Sell it, free it As a cyclical "loss leader" BSD or
Mozilla

Software functionality
(while it remains closed).

Possible until the product
becomes an interchange-
able asset (at which point,
it is released)

–hypotheti-
cal–

Brand licensing Sale of name rights. The
version co-exists with the
"generic" branded version.

 Value added, for example,
through additional vali-
dation and testing of the
non-brand product.

 –hypotheti-
cal–

Software franchising Sale of franchise and per-
centage of franchise rev-
enue

 As a support-seller and
brand licensing

Possible if it has a good
reputation.

–hypotheti-
cal–

Limit code availability: sale of licences under certain conditions Trolltech
Qt

User-based treatment on – sale to commercial users Open
Group

Hybrids (licences are nei-
ther free nor pure propri-
etary)

Treatment based on use – sale for commercial use, or sale for use on certain platforms Qt

Summary of classification of business models ("Setting up shop: the business of open source" Hecker, 1998)

In The Black Cauldron, Eric S. Raymond also outlines the role of free software

in business, focusing, among other aspects, on how free software affects the

"use�value" (value�as�an�intermediate�product) and "sale�value" (value�as

the�end�product) of the software, proposing a taxonomy based on which of

the two the company exploits.

For Raymond, only sale value is affected by a free software model, so his clas-

sification describes models based on use value and models based on indirect

sale value, in which free software makes the sale of another product or service

viable:

• Models based on use value

– Cost sharing (for example, Apache)

– Risk sharing (for example, Cisco)

• Models based on indirect sale value

– Loss-leader/market positioner

– Widget frosting

– Give away the recipe, open a restaurant

– Accessorising

– Free the future, sell the present

– Free the software, sell the brand

Recommended website

For more information, see:
http://catb.org/~esr/writings/
magic-cauldron/

GNUFDL • PID_00145049 10 Business models with free software

– Free the software, sell the content

As we can see, in the models based on indirect sale value, Raymond includes

those of Hecker, plus one new one "Free the software, sell the content". In this

model, the value lies in the information provided by the software platform,

which is the information sold through subscriptions. The software is released,

meaning that it can be carried over to different platforms, thus expanding the

potential market of the real product: the�content.

Though he proposes it only as a hypothetical model, Raymond anticipates

the "social�website" concepts and paradigm shift proposed by O'Reilly in his

article "Open Source Paradigm Shift."

However, he does not recognise the role of the Internet as a platform or the

subsequent "software as a service", considering that the value of releasing the

software will lie in carrying it over to other platforms, thus contributing to its

diffusion and market expansion.

2.2. European Working Group on Libre Software

The business models presented by Hecker and Raymond are based on obser-

vation of companies that used free software as part of their business models,

though they perhaps lack a degree of systematisation and abstraction in their

taxonomy. In its document "Free Software/Open Source: Information Society

Opportunities for Europe?", the European�Working�Group�on�Libre�Soft-

ware (http://eu.conecta.it/paper/) makes an analysis based on how free soft-

ware projects are funded rather than on the basis of their business models and

regardless of whether the project is linked to a specific company:

• Public funding.

• Non-profit private financing.

• Financing for those who need improvements.

• Financing with related benefits (O'Reilly and Perl).

• Financing as internal investment.

• Other (bonuses, development cooperatives, use of markets to establish

contact between clients and developers).

Its "Financing as internal investment" section, however, contains a classifica-

tion of business models, which include, among others, the possibility of gen-

erating revenue�through�services, as a result of the competitive advantage

afforded by being the main developers of a given software project.

Recommended website

For more information on
"Open Source Paradigm
Shift" see:
http://www.oreillynet.com/
pub/a/oreilly/tim/articles/
paradigmshift_0504.html

GNUFDL • PID_00145049 11 Business models with free software

Model Differentiation Revenue Licences Examples

Better knowledge here Better understanding of the prod-
uct: must be the developer of the
product or a collaborator.

Related services: custom develop-
ments, adaptations, installation,
integration.

Free LinuxCare (in its early
days)
Alcove

Better knowledge here
with constraints

Better understanding of the prod-
uct: must be the developer of the
product.
Part is kept proprietary.

Related services and sale of pro-
prietary part.

Free and
proprietary

Caldera
Ximian

Source of a free product Producer, almost entirely free
product.

Related services: custom develop-
ments, adaptations, installation,
integration.

Free Ximian
Zope Corporation

Source of a free product
with constraints

Proprietary product in principle.
Subsequent release as a strategy
to expand adoption and other
advantages of free software.

Sale of commercial version. Free and
proprietary

Artofcode LLC
Ada Core Technolo-
gies

Special licences Best knowledge here
Offer of proprietary version for
customers who do not want GPL.

Sale of commercial version, and
related services.

GPL and
proprietary

Sleepycat

Sale of brand Based on image and brand, al-
lowing the product to be sold at
a higher price.

Sale of distributions, and related
services (including certification
and training)

Free Red Hat

Business models based on free software. ("Introduction to Free Software" teaching manual)

2.3. Empirical studies

In "Business models in FLOSS-based companies", Carlo Daffara describes an

empirical study of business models based on the use of free software, under-

taken in the context of the FLOSSmetrics�project. The study also examines

how these models handle the marketing of their products and what licences

they use.

The study started out with 120 companies, of which it eliminated those not

considered to be based on FLOSS (free, libre and open source software), and

those that only allowed access to the code to non-commercial users or which

did not allow redistribution. It also eliminated companies that, despite mak-

ing important contributions to free software projects, do not base their core

business model on it (such as IBM, HP and SUN).

It selected a set of characterising features, such as licensing, products and ser-

vices offered (installation, integration, training, consulting, legal and techni-

cal certification), types of contract (subscription, licence, or per-incident) and

self-referential literature offered on their websites and information on their

relationship with the community. Lastly, the data were collected and all non-

significant variables were eliminated to obtain the following characterising

variables:

• Main revenue generator

– Selection.

Recommended website

For more information, see:
http://opensource.mit.edu/
papers/OSSEMP07-
daffara.pdf

GNUFDL • PID_00145049 12 Business models with free software

– ITSC (installation/training/support/consulting). The different types of

service are grouped together, since the study found that the companies

offering one also tended to offer the others.

– Subscriptions.

– Licences.

• Licensing model

Applying cluster analysis to the companies characterised by these variables,

the study obtained six basic business models, and a seventh group that was

analysed separately:

1) Twin�licensing:dual model of GPL and proprietary licence in order to sell

to those who want to develop closed-source code based on the free prod-

uct.

2) Separate�OSS�and� commercial�products: sale of commercial products

based on a free one.

3) "Badgeware": brand protection; released products must keep original lo-

go/authorship visible.

4) Product�specialists: creation of a free product and sale of services relating

to it.

5) Platform�providers: selection, integration and support services, providing

tried and tested platforms.

6) Selection/consulting� companies: generic services and analysts do not

generally contribute to the community, since the results of the analysis

and consulting are kept private.

7) Ancillary�markets: by way of example, SourceForge/OSTG generates most

of its revenue from sales from its affiliate site, ThinkGeek. Although this

model is not one of those characterised by the study (the limited number

of cases in this category did not allow for extrapolation), it should not be

underestimated as it is an important financing model.

The following table shows the results of the study.

GNUFDL • PID_00145049 13 Business models with free software

Business models in FLOSS companies (Carlo Daffara, "Business models in FLOSS-based companies
http://opensource.mit.edu/papers/OSSEMP07-daffara.pdf)

GNUFDL • PID_00145049 14 Business models with free software

2.4. Proposed classification

The last classification analysed is interesting because it provides empirical da-

ta on real companies that currently focus their business model on free soft-

ware. However, like Hecker, Daffara proposes a characterisation in isolation,

rather than a taxonomy. We now propose a schema of our own to sort and

incorporate the ideas we have analysed thus far, classifying the models by the

degree to which their revenue is derived from the intellectual property rights

over the software and by the extent to which they focus on the provision of

products or services:

Our classification, like that of other authors, is based on source of revenue.

Nonetheless, besides considering how the different companies recover their

investment in free software development, it is also important to analyse how

they exploit the advantages that a free development model can offer.

Business models are also characterised by their source of revenue, by the mar-

ket they are aimed at, how they develop and market their products, and by

how they relate to the competition. Hence, there is a cross-cutting issue af-

fecting any business model that becomes particularly relevant with the use of

free software: the concept of coopetition.

Coopetition

Among the other features differentiating free and proprietary software is the

fact that the use of free software can enhance the quality of the services of-

fered, thus helping to remove barriers to entry and sketching out a scenario

of increased competition and effort for differentiation and specialisation, be-

sides a distinct, open, cooperative competition in which companies will need

GNUFDL • PID_00145049 15 Business models with free software

to cooperate as well as compete if they wish to prosper. This business concept,

which in some ways is replacing that of "winner takes all" in the context of a

new network economy, is called coopetition.

Coopetition: cooperation between competing companies to seek win-

win scenarios, either to enhance the value of the product or to expand

the market.

In this context, companies need to carefully examine their economic�ecosys-

tem – clients, providers, competitors and complementers – implementing

strategies for the creation of new alliances and rethinking their traditional as-

sociations.

This concept is not unique to free software and has extended to other areas.

Companies in the same industry can collaborate with one another to expand

their markets, competing later when it comes to segmenting them.

Example

Intelwill invest considerable sums in expanding the microprocessor market, even though
part of this investment will directly benefit its competitor, AMD. In this case, given Intel's
dominant position, the percentage of its investment that will benefit others will be quite
low.

Although coopetition is not exclusive to free software, it is highly significant

in open-source development scenarios. It is inevitable that the competition

will benefit from our investment, so it is necessary to find ways to turn this

apparent disadvantage into a business advantage. Moreover, incorporating the

users (clients) into the development process, involving them and encouraging

their participation as allies, is also a feature of the free software development

model.

To a large extent, the use of free software will also limit the possibility of be-

coming a monopoly and provide an anti-captivity guarantee. Again, a key

question for any company becomes especially relevant in free software sce-

narios: how can we create value for a client while at the same time extracting

some of this value for the company?

Recommended website

For more information, see:
Henry Chesbrough; Wim
Vanhaverbeke; Joel West.
"Open Innovation: research-
ing a new paradigm"
http://
www.openinnovation.net/
Book/NewParadigm/Chap-
ters/index.html

GNUFDL • PID_00145049 16 Business models with free software

3. Business models with free software

In this section, we will study each business model with specific examples.

Note that these are not rigid models, but rather a diffuse continuous sequence.

Many of the companies that we will mention combine several of the models,

although we put them into categories for their systematic study.

3.1. Specialist/vertical (a free application as the main product)

In this section, we include companies that produce free software as the pro-

moters and/or leaders of specific projects. Their involvement with free soft-

ware is thus very significant and one of the key aspects of their business strat-

egy will be the management of the community and seizing of the opportu-

nities for innovation, diffusion and volunteer work that it offers. In essence,

these models have a free product for the community and a product or related

service as their commercial offer, so the key to their success is often to strike

a balance between the two. According to Marten Mickos, CEO of MySQL AB:

FOSS companies will not work unless they serve equally those who want to spend time
in order to save money, and those who want to spend money in order to save time".

These companies are the most common in Daffara's study, including the first

four categories (twin licensing, OSS/proprietary versions, badgeware and prod-

uct specialists). They equate to the product companies we saw in module 3 of

this subject, so their main problem will be how to recover the initial invest-

ment in development.

As we saw in the above classifications, a common strategy is to obtain revenue

through proprietary licences, which are combined with free licences in differ-

ent ways.

There are also models� that� cyclically� combine�proprietary� licences, like

Hecker's "loss leaders" and "sell it, free it". The� loss-leader� concept� is�not

unique�to�software, being a widespread strategy in every sector of activity: a

product is offered free of charge – or at such a low price that it entails losses

for the supplier – as a way of attracting the attention of a large number of

potential customers to whom the company intends to sell other items. Hence,

both dual licence models and free products with proprietary extensions use a

loss-leader strategy to some extent.

Besides promoting the sale of the related product, there are several benefits

to adopting an open-source strategy of this nature in the software industry,

such as helping to establish the technology as a de facto standard, attracting

GNUFDL • PID_00145049 17 Business models with free software

improvements and complements to make the product more appealing, gen-

erating sympathy in an audience that includes potential customers of the re-

lated product, and reducing the maintenance costs of the project.

We will now look in detail at the twin- or dual-licensing model and the mod-

el combining a core free product with proprietary accessories. We omit oth-

er models in which the main product is not free because they are really busi-

ness models based on proprietary software: the code is only released as a com-

plementary business strategy to enhance the position of the core proprietary

product.

Daffara also lists several companies that carry out development projects with

entirely free licences and earn their income from ITCS(installation/training/

support/consulting). This group is perhaps one of those that can encompass

the most different models, since its revenue source is a rather vague category.

Hence, it is important to look closely at the markets they serve and their dif-

ferentiation with equivalent products, in addition to best knowledge.

3.1.1. Mixed models: dual licensing

This model is based on the distribution of a product under two different

licences: a traditional proprietary licence and a restrictive free licence

(GPL type). Thus, if somebody wishes to derive a work from it and re-

distribute the new work without the code, they can, but they must pay

for a licence. Otherwise, all derivative works must be redistributed with

the code.

Michael Olsen, manager of Sleepycat Software Inc., producers of BerkeleyDB,

describes its dual-licensing model thus:

"The Sleepycat open source license allows the use Berkeley DB [...] without cost, under
the condition that if the software is used in an application that is later redistributed, the
complete code of the application must be available, and must be able to be redistributed
again freely under reasonable conditions. If you do not want to offer the source code of
an application derived, you can buy a Sleepycat Software license."

S. Comino; F. M. Manetti. "Dual licensing in open source markets". Available at: http://
opensource.mit.edu/papers/dual_lic.pdf

This strategy is appropriate when a substantial proportion of the demand is

generated by commercial users who need to embed the software in their own

products. These customers use the product purchased as input for the produc-

tion of new software, either as an end product or as part of a more complex

technology produced and sold by the commercial customer. Whether because

they need to be able to sell their derived products under a traditional propri-

GNUFDL • PID_00145049 18 Business models with free software

etary system or because the software they generate is a fundamental part of

their differentiation, this customer will need to close the code it generates and

must therefore pay to do so.

These models divide their users into two groups: the community – all users

who are content with free licences, and use the product under these terms –

and corporate clients sensitive to the reciprocal terms of free licences.

However, maintaining a community of people collaborating on the product

can be problematic. On the one hand, if direct income is obtained through

the product, this could affect the motivation of the volunteers who contribute

without receiving anything in return. While on the other hand, the com-

panies that implement it must formally obtain copyright assignment from

the volunteers in order to avoid future problems from disgruntled employees

claiming their share of revenue from licences for the product that they helped

develop.

In practice, companies that base their model on dual licensing do not benefit

greatly from the possibilities of external contributions to the development,

obtaining only small-scale debugging and the odd patch from the community.

The main development team is typically almost 100% dominated by company

employees.

Another problem that can arise with these models is that their customers can

build their own proprietary extensions without modifying the original code,

so they can use the free licence version and have their add-ons as a separate

and independent application.

These companies often combine the revenue generated from dual licensing

with other activities such as the provision of services, which we will see later.

Examples of this model include Funambol, MySQL, Sleepycat DB, and Troll-

Tech/NOKIA.

The Funambol case

Company�name Funambol, Inc.

Head�office Redwood City (United States)

Website www.funambol.com

Creation�date 2001

No.�of�people�employed�in�2007 40

Turnover�in�2007�(million) $4.8

Corporate data on Funambol, Inc. Table prepared with statistics from Hoovers (http://www.hoovers.com)

Funambolis a US corporation engaged, as its motto states, in "mobile 2.0 messaging
powered by open source". The company develops a mobile application server (providing
push e-mail, address book and calendar, data synchronisation, and an applications server

Recommended website

For more information, see:
http://www.funambol.com/
blog/capo/2006/07/my-hon-
est-dual-licensing.html

GNUFDL • PID_00145049 19 Business models with free software

for mobile devices and PCs), together with a development platform for mobile applica-
tions, both developed under the name "Funambol".

It sells its code base under two licences: the AGPLv3 for its "Community Edition" and
a commercial proprietary licence for its "Carrier Edition". It also combines this strategy
with providing the additional functionality required for large-scale implementations of
the closed version as well as services based on the "Carrier Edition.

In this case, Funambol chose the "Affero" GPL licence, which affords it extra protection
against the commercial use of its applications in the form of software as a service (SaaS).
As discussed in module three of this subject, the GPL allows the code to be modified
without redistribution, provided that the application itself is not redistributed, as occurs
with the provision of software as a service. The "Affero" GPL solves the problem of this
void by requiring redistribution of the source code when the software functionality is
offered under the "SaaS" model too.

The nature of the software makes it an ideal candidate for the dual-licensing model as
it appeals to other companies seeking to develop closed applications on its platform,
such as mobile telephony operators, device manufacturers and other software companies.
Because of its use of the AGPL, companies that use Funambol as the basis of their "SaaS"
offers must also pay if they do not wish to redistribute the code. Its customers include
Vodafone, Earthlink and Computer Associates.

Funambol tries to fully exploit the needs of large corporate customers with the incorpo-
ration of additional functionality in its commercial version and services. To avoid the
problems of the "free kernel + proprietary accessories" model that we shall see later, it
makes sure that the closed functionality is only interesting in scenarios of large corpo-
rate implementations, so its free user community will not feel the need to develop this
functionality by itself.

In "My Honest Dual Licensing", Fabrizio Capobianco, manager of Funambol, argues that
the dual-licensing model is the most "honest" model in upholding the principles of free
software development, making it more compatible with business' need to generate prof-
its.

However, as we saw earlier, defining a viable source of income does not guarantee the
success of any company and the use of free software will allow us to implement qualita-
tively different strategies to those of a model based on proprietary software. Funambol
is a case in point here, since the company had to refine its marketing practices and their
target populations before hitting on a viable business model.

In its early days, Funambol tried to set up a classic software-vendor model around its free
software product. The company developed Sync4j, which enabled developers to build
applications for mobile devices under the "sometimes-connected" paradigm (the applica-
tion can work offline, synchronising data when the connection is restored). It identified
large companies and wireless operators as prospective clients which, due to large staff
numbers and the increasing opportunities for mobility, would need to synchronise data
between mobile devices and their corporate servers.

In order to reach these customers with its product, Funambol decided to pursue a proac-
tive sales strategy with particular emphasis on marketing and its sales force, which tried
to access the potential customers directly through telephone campaigns.

It met with very limited success. Funambol failed to meet its sales expectations because
it found that large corporations were reluctant to deal with small new companies. In
addition, the sales cycles were very drawn out and it soon became apparent that a much
bigger sales and marketing team was required to maintain this strategy than Funambol
could afford.

Funambol quickly realised that its problems were down to this active sales strategy, the
traditional method in the world of proprietary software but a barrier to entry that only
a handful manage to overcome: to access a group of potential customers consisting of
large corporations, it is often necessary to have a large sales and marketing capacity, as
well as a sufficient size and reputation to deliver the required confidence.

The use of free software allowed the company to reverse this strategy, focusing on a reac-
tive type of marketing in response to initiative from the customer. In this new scenario,
potential customers would seek out Funambol, leaving the company with the role of
being attentive in order to identify them after contact.

GNUFDL • PID_00145049 20 Business models with free software

The effectiveness of this strategy depended on a single factor: the number of downloads
of its product. Once it had obtained enough downloads, it was able to identify the follow-
ing typical sales cycle (much shorter than the one observed with the previous strategy):

1) The potential user accesses the Sync4j website for information on the product and
technical documentation.

2) The user downloads the product.

3) He/she later subscribes to the mailing list for more information.

4) Following extensive use of the product (usually in R&D projects), the customer con-
tacts Funambol to ask about pricing and licence conditions. Internally, they are clas-
sified as prospective customers.

5) Finally, they ask for a quotation and formal offer and can become a Funambol client.

(Fabrizio Capobianco; Alberto Onetti. "Open Source and Business Model Innovation. The
Funambol case". Available at: http://oss2005.case.unibz.it/Papers/4.pdf)

The key factor for continuing to fuel this cycle is, as we explained earlier, maintaining a
high number of product downloads. The cycle is continuous, generating more downloads
by itself. Thus, after the initial effort, this mechanism gathers enough inertia to work
virtually alone.

To do so, Funambol concentrated on creating�a�community�around�its�product, focus-
ing its marketing efforts on the users of its free version, both experts and those with fewer
technical skills. Although this strategy is not directly oriented towards its revenue-gen-
erating customers, it proved much cheaper and more efficient.

The company focused on raising the profile of the product among developers, partici-
pating in development forums, mailing lists, specialist publications, conferences, creat-
ing partnerships with non-profit organisations that promote free software and establish-
ing synergies with other well-established open-source products. For more inexperienced
users, it had to ensure that the product was easy to install and that sufficient documen-
tation was available on the website. When it began to focus on these last two factors,
the company observed a substantial increase in the number of product downloads, thus
setting in motion its sales-generating cycle.

3.1.2. Mixed models: free product kernel and proprietary

accessories

In this model (Daffara's "Split OSS/commercial releases"), a program has two

different versions: a free basic version and a proprietary commercial version

based on the former but with additional functionality implemented through

plug-ins or accessories. The free version must use an MPL or BSD type licence

allowing the combination in order to create a closed product.

The main problem with this model lies in keeping the free product interesting

enough without taking value away from the revenue-generating proprietary

product. We also run the risk that the community formed around the product

may decide to develop the functionality of the proprietary version on its own,

making it difficult to generate revenue from sales.

In this model, we can distinguish between two classes of users: those who are

willing to pay for a product with some additional features (medium and large

companies), and those who are very sensitive to price, such as small business-

es, micro-enterprises and private users. By combining free and proprietary ver-

sions, we obtain a more widespread adoption of the proposed solution with-

GNUFDL • PID_00145049 21 Business models with free software

out missing out on revenue capture from proprietary versions. As we saw in

previous modules, in a "winner takes it all" scenario, common in software,

strategies based on widespread adoption are very important.

Hence, it is based on the same user-segmentation principles as the dual-licens-

ing model but is more at risk of losing the sympathy of the community, since

it does not have access to the entire source code.

An example of this model is �Sendmail�Inc., which sells an array of proprietary

products around the sendmail open server. Other examples include Hyperic

(IT Operations/Monitoring), SourceFire (SNORT commercial version), Zimbra/

Yahoo (messaging, groupware) and XenSource/Citrix (virtualisation).

The Sendmail case

Company�name Sendmail, Inc.

Head�office Emeryville, CA.
(United States)

Website www.sendmail.com

Creation�date 1997

No.�of�people�employed�in�2007 125

Turnover�in�2007�(million) $23

Corporate�data�on�Sendmail,�Inc. Prepared with statistics from Hoovers (http://
www.hoovers.com)

When studying business models based on free software, we often think of corporations
that decide to open up their code as a competitive advantage to expand their market
share. Sendmail is an interesting case as this process occurs in reverse: with free, non-
profit roots, the creation of a commercial initiative around the project is aimed not only
at generating revenue from the development, but also to maintain the project's domi-
nant position in its sector and to expand its user base.

Sendmail is a mail transfer agent (MTA) and one of the best known examples of projects
born out of free software communities. In 1998, it was estimated that 80% of all e-mail
traffic was sent through Sendmail. It is still the most popular MTA on the Internet, al-
though it has lost some users to Microsoft Exchange Server, Exim and Postfix. Equally
important is the long lifespan of the product, whose origins date back to developments
started in the 1970s.

Eric Allman developed the first version of Sendmail at Berkeley University in the early
1980s on the basis of previous work on the Delivermail program and founded Sendmail,
Inc. in 1997. The company strategy focused on selling additional Sendmail functionality
in a proprietary format (e.g. user-friendly interfaces) in addition to providing comple-
mentary services. At the same time, the company made an effort to openly maintain
the continuity of Sendmail's development by providing hosting services and human re-
sources for its development.

When he set up the company, Allman expected not only to develop a business, but also
to protect Sendmail's dominant position, which was being threatened by the emergence
of proprietary formats that jeopardised the SMTP open standard. The company concen-
trated its efforts on the corporate environment, offering not only integration and sup-
port services, but also a product that was more responsive to its needs. The extensions
created by the company provide graphical interfaces and ease of management, and are
marketed in proprietary formats.

GNUFDL • PID_00145049 22 Business models with free software

"Sendmail, Inc. develops commercial products and services for ISPs and enterprises for
whom email is mission critical, while continuing to drive innovation and standards
through Open Source software development."

Sendmail, Inc

We can consider the creation of Sendmail, Inc. to have been the necessary step to cross
the "chasm" and guarantee the product's adoption by the pragmatic and conservative
majorities. Nonetheless, for Allman, it was important to maintain the original function-
ality of free Sendmail, so Sendmail Consortium was set up as a non-profit entity to de-
velop the free version. In this way, it can capitalise on the advantages of an open devel-
opment model, such as contributions, cost-cutting, product innovation and evolution.

Allman thus took advantage of "the chasm" to sell proprietary extensions to his prod-
uct without the danger of forking his project. Following Moore's model, the communi-
ty around the free Sendmail project consists of innovators and technology enthusiasts
interested in the raw functionality and new proposals. Business customers, however, are
pragmatists and conservatives with very different needs and aims. The proprietary ex-
tensions, which focus on the functionality of the product packaging and finish (ease of
use, graphic interfaces, stability, etc)., are not only uninteresting to innovators, they may
even seem unnecessary. The presence of this chasm between the interests of the commu-
nity and commercial customers allows for the co-existence of the core free version and
the widespread proprietary version without the risk of forks, since the community has
no interest in the extensions on the other side of the chasm.

3.1.3. Free models: "distributed sale" of the product

It is commonly assumed that licensing a product in free format leads to loss

of opportunity for earning direct revenue from the intellectual property rights

over it, creating the need to exploit complementary products or services.

However, choosing a free licence for a project does not necessarily mean for-

going the possibility of obtaining revenue directly from this product. The

widespread idea that nobody will pay for something they can obtain for free

does not paint a true picture of reality. Many people are willing to pay a small

sum for a work that they value if they think that this money will go to the

original authors. If a project is successful enough, it may receive small con-

tributions from a lot of people, perhaps even managing to fund its creation

in the same way that a street artist does not charge admission but can raise

enough to make his or her investment in time and effort worthwhile. This is

the idea behind theThe Street Performer Protocol and Digital Copyrights, by John

Kelsey and Bruce Schneier, which proposes a distributed funding mechanism

for digital works in which the author does not complete his/her work until

sufficient funding has been collected.

Recommended website

http://firstmonday.org/
htbin/cgiwrap/bin/ojs/
index.php/fm/article/view/
673/583

Different mechanisms have been described and implemented for structuring

this direct, distributed funding in the context of software development, from

grants and bounties to the creation of on-line markets that bring together

developers and prospective clients, based on a bonus scheme similar to that

described by Chris Rasch inThe Wall Street Performer Protocol.

Recommended website

http://www.firstmonday.org/
issues/issue6_6/rasch/
index.html

GNUFDL • PID_00145049 23 Business models with free software

Donations are the most straightforward mechanism for this type of financing,

but too unstable for creators, who need the security of an income before they

invest their time. In bonus and bounty systems, the people interested in a

specific functionality offer a reward for it to be implemented. When the total

reward – which various people can contribute to – reaches a sufficient sum for

a developer, he or she can offer to do it and is paid once it is finished. Some of

these systems rely on the trust between the development team and the users,

and have no payment guarantees, while others propose the establishment of

some form of neutral intermediary.

The key to success in these scenarios may lie more with the payment facilities

offered than with the willingness of users to pay:

"Most people are happy to pay a tiny extra bit on top of some larger amount, if they
have their wallet out already and think it's for good reason. When people fail to make
small, voluntary donations to a cause they like, it's more often due to the inconvenience
(writing a check, putting it in the mail, etc), than the money.

(Karl Fogel. "The Promise of a Post-Copyright World". Available at: http://
www.questioncopyright.org/promise)

Although many projects implement these ideas to obtain additional funding,

it is difficult to identify corporate scenarios where the bulk of the revenue is

obtained through these mechanisms.

Firstly, in the context of software, this type of funding can be more difficult

to obtain because of the absence of a strong identification with and sympathy

for the authors, which does exist with other creative works.

Secondly, this model is likely to be more successful if it is a non-profit free

software project composed entirely of volunteers, which will arouse the sym-

pathies of its users more easily. A company wishing to use it successfully will

no doubt have to obtain prior acknowledgement through transparency and

trust, proving that profit-making is not the be all and end all and that the

project will have an impact on the common good (we will look later at busi-

ness models based on these principles).

These systems have a more direct economic model, eliminate intermediaries

and ensure greater proximity between users and developers. In one sense, they

could be considered the natural way to fund a free software project: just as

volunteers contribute to varying degrees and in different aspects of the soft-

ware development cycle, so too can users form part of the project by making

a financial contribution in line with their possibilities and interests.

The Cherokee server

This server decided to imple-
ment a bounty system with
the primary aim of attracting
new developers to the project.
Besides rewarding effort, pro-
viding a financial incentive
would attract more people to
the development community
and encourage the growth of
the project.

Virtual markets

Several attempts have been
made to create "virtual soft-
ware markets" based on
this type of funding. Some
of those currently operat-
ing include BountyCounty
(http://bountycounty.org/
) MicroPledge (http://
micropledge.com/) and
BountySource (https://
www.bountysource.com/).

GNUFDL • PID_00145049 24 Business models with free software

3.1.4. Free product plus associated services

Companies in this category implement a strategy of the type "best knowledge

here" and "best code here", developing a free product and offering services for

it as a means of generating revenue.

This sections encompasses both the product specialists and badgeware of

Daffara's study, since they both represent the same business model. Moreover,

although badgeware licences include an additional assignment constraint,

they maintain the essential characteristics of openness and freedom of knowl-

edge and can generate the same benefits through their development commu-

nities as those that use licences without this constraint. The companies con-

stituting examples of badgeware probably also seek to launch some sort of

brand strategy, so they place special importance on assignment when redis-

tributing the products they generate.

This model has a number of problems, such as few barriers to entry to the

business – any company can gain knowledge of the product and offer ser-

vices – and problems obtaining support contracts as client companies may

prefer to continue with their regular service or consulting companies or to

hire providers that offer support for their entire new technology infrastructure

and not just for a specific product.

Another common problem faced by these models for generating revenue from

services is that of innovators and enthusiasts: when a new product comes on

to the market, its early users are often people with technical skills that will not

contract support services for it, preferring to acquire the necessary knowledge

for themselves. This model then will need to offer an extended product and

transmit reliability in order to reach a potential market that will pay for ser-

vices relating to the product.

The success of this type of business model is questioned by some authors (like

Perens). Nonetheless, there are many companies based on this model that

have attracted large sums of venture capital. For a more sustainable business

model, however, they will need to address the problems mentioned above.

The models of vertical service provider specialists include Alfresco (content

management), Compiere (ERP, CRM), vTiger and Openbravo.

The Openbravo case

Company�name Openbravo, S. L.

Head�office Pamplona (Spain)

Website www.openbravo.com

Corporate data on Openbravo. (Obtained from http://www.camerdata.es)

GNUFDL • PID_00145049 25 Business models with free software

Creation�date 2001

No.�of�people�employed�in�2007 26 to 50

Turnover�in�2007 Up to €300,000

Corporate data on Openbravo. (Obtained from http://www.camerdata.es)

Openbravo is an interesting example of this type of model. The company, founded in
2001, develops two free applications for SMEs – OpenbravoERP (enterprise resource plan-
ning) and OpenbravoPOS (point of sale) – which seek to meet the needs of management
and planning and of point of sale terminals for small and medium enterprises, respec-
tively. The code was published in 2006 and is currently among the most active projects
in the SourceForge ranking.

The company has attracted substantial sums of venture capital, with investors such as
Amadeus, Gimv, Adara, and SODENA (Sociedad de Desarrollo de Navarra), which has
invested €5 million in the company.

Its business strategy is geared towards becoming a leading product in the industry
and making OpenbravoERP the benchmark for management software among SMEs. To
achieve this, the company is exploiting the possibilities of free software to the maximum
through careful community management and application of the coopetition concept.

As we saw with Funambol, Openbravo observed that, alone, it did not have the capacity
to disseminate and distribute its product among potential users. Although Openbravo-
ERP and OpenbravoPOS are aimed at SMEs rather than large corporations, in order to
achieve its strategic aims of becoming the sector leader, the product had to reach count-
less small and medium businesses worldwide.

In addition to the size requirements for conducting a marketing campaign of this scale,
the company was also aware of the potential difficulties of competing to provide services
directly to end users, who might prefer local businesses or ones offering integral solutions
and not just companies dealing with a single product.

To overcome these barriers, Openbravo positioned these companies as collaborators
rather than competitors. Thus, it admits that, simply because it developed the product,
this does not necessarily mean that it is the best company for providing related services
to end users. Its mission was to create a good product that could expand markets, gen-
erating new revenue opportunities for IT services companies, which could complete its
offer with OpenbravoERP and OpenbravoPOS.

Thus Openbravo defines the provision of services to other IT services companies – inter-
mediaries between it and the end users – as its revenue generator. These companies form
a network of partners that carry out the tasks of implementation of OpenbravoERP and
OpenbravoPOS in SMEs.

Openbravo offers its partners various services (support, training), by implementing a
pyramidal system of consulting similar to that described in module 3 of this subject, as
well as conveying reliability and trustworthiness. As they are supported by the product
developers, they can exploit the strategy of "best knowledge here" and "best code here"
on their markets.

GNUFDL • PID_00145049 26 Business models with free software

Openbravo: Business opportunities and paths for growth (obtained from the Openbravo presentation
at WhyFLOSS Madrid 2008 "Openbravo: keys to success in free software application development".
http://www.whyfloss.com/es/conference/madrid08/getpdf/49).

Openbravo thus operates a strategy of coopetition, giving service companies the oppor-
tunity to exploit Openbravo in the context of their natural markets while benefitting
from the increased diffusion of its product, and obtains revenue directly from its part-
ners. Thus far, it has been considerably successful with this strategy and currently has
eighty-five partners around the world.

3.1.5. Software as a service

Companies that develop a product can also exploit it through the paradigm of

software as a service. Instead of offering installation and support services, the

company is responsible for all hardware and software infrastructure, offering

functionality directly through the Internet. The recurring revenue generated

takes the form of service subscriptions.

Collabnet: software as a service

A good example of this type of model can be seen in CollabNet, which provides services
for collaborative software development (version control, issue tracking, communication,
etc.), generated, among others, through the Subversion version control platform. In this
case, in addition to keeping the source code open, the company spends a lot of effort
on maintenance of the community, so that its work on the project is merely a contribu-
tion – albeit a large one – within a free community. Other examples of companies that
market their products according to the "software as a service" model include SugarCRM,
SocialText and JasperSoft.

With the "software as a service" format, these companies will not come across

any more difficulties generating revenue than their proprietary equivalents,

since the sales in this case are not derived from the copyright on the product.

The fact that a client can download, install, configure, host and maintain the

application will be more a tool for marketing and distribution than a loss of

income. As noted earlier, corporate clients are willing to pay for having their

problems solved.

Nonetheless, releasing all of the code creates problems with differentiation

and opportunities for the entry of competitors. Any company with a sufficient

technical capacity and infrastructure could offer a similar service if the code

were available. In the light of this problem, the company that developed the

product could base its differentiation on "best knowledge here" and "best code

here" to gain the sympathy of the community. In addition, if its competitors

GNUFDL • PID_00145049 27 Business models with free software

also chose to contribute to the development, it could set up coopetition mech-

anisms, collaborating to expand the market and segmenting it later according

to specialisation.

Like the mixed OSS/proprietary strategies we saw earlier, some companies in

this category will implement solutions incorporating some form of restriction

on their code, mainly by keeping a small section of the code closed, which

will form the basis of their differentiation.

3.2. Services associated with free software

Considering the services associated with free software, there are many possible

businesses because, in general, any services model based on proprietary soft-

ware (such as those discussed in module 3) can be extrapolated to free soft-

ware in a fairly direct way. All of the steps described in the chain of creating

and implementing a technology solution are viable in the context of open

applications. However, the use of free software extends the possibilities and

differentiation factors of business models focused on services.

One of its basic differentiating principles is the absence�of�licensing�costs,

giving it a clear competitive advantage over proprietary solutions. Nonethe-

less, in order to take advantage of this factor, it is important for the proposed

solution to be cheaper in the long run (considering the "total cost of owner-

ship") and to provide a standard of quality at least equivalent to its proprietary

competitors. It is also crucial for companies offering free software services to

be more attractive to customers by reducing the possibility of lock-in situa-

tions: these providers cannot rely on continued income in a situation with

captive customers; instead, they must be based on the continued�provision

of�quality�services.

On the other hand, just because a software is free, this does not mean that

it will be accessible to everybody. The market for service companies will not

diminish due to the availability of free applications or those at no cost, since

the task of selection, installation, training and support will always be necessary

in corporate environments, and it will be more interesting if the licensing

budget is spent on improving service.

As a rule, these types of company are involved in various projects, though not

intensively in any. Some will contribute, as is the case of platform distributors,

with debugging, especially in areas of customer interest, and on the tasks of

integration and ensuring compatibility between different applications. Oth-

ers, such as those that focus on consulting and selection (with no capacity for

development), will not contribute to the projects on which they are based,

since their work is usually kept private and will not be visible to the public. In

these cases, however, a return can be obtained in the form of the promotion

and adoption of the solution on which they work.

GNUFDL • PID_00145049 28 Business models with free software

There is a vast range of possible models in this category (differentiation with

respect to size, solution segmentation – horizontal or vertical – industry seg-

mentation, specialisation in a particular service: custom development, selec-

tion, consulting, integration, training, etc.), and most companies will offer a

combination of the possible services. First of all, we will look at the special

features of free software in the different stages of implementation of a tech-

nology solution, before turning to the specific typologies of business models,

which group certain services in a particular way.

Custom�developments

Free software offers companies a compromise on the question of "to�buy�or�to

develop". These companies can start with a free standard product and, either

internally or through a development company, build the necessary adapta-

tions to suit their needs. Both the service companies that we will look at now

and the product-oriented ones we saw previously will receive offers to per-

form this type of customisation. However, making these adaptations privately,

without trying to incorporate them into the master project, can be problem-

atic when it comes to maintaining compatibility between the adaptations and

subsequent versions. Hence, working with the community, designing the new

features so that they can appeal to more people, and incorporating them into

the main code of the project will save a lot of work and complications.

Selection

The presence of a wide range of applications within the (economic) scope

of any company makes selection a critical task. Not only will it be necessary

to find products that better suit the needs of the client company, they must

also evaluate the health of certain projects, the pace of debugging and new

releases, and their stability. For corporate environments, a project with a lot

of movement and a rapid rate of adoption of improvements may not be the

best, since a stable product that will not change significantly over time may

be more appropriate.

Installation�and�integration

Although this phase also generates needs in commercial environments, free

software has a special business opportunity in this field: its lack of packaging

and final finish. InOpen Source for the Enterprise, Woods and Guliani allude

to the concept of "productisation" as one of the main shortcomings of free

software for achieving widespread adoption. The term refers to the degree to

which the application has been packaged and prepared for end users, with the

development of automatic installers, graphical configuration interfaces and

sufficiently detailed documentation which, in short, allow for its installation

and use by inexperienced users.

Additional reading

D.�Woods;�G.�Guliani
(2005). Open Source for the En-
terprise: Managing Risks, Reap-
ing Rewards.

GNUFDL • PID_00145049 29 Business models with free software

As a general rule, commercial software comes more packaged and finished

than the free software developed on a voluntary basis. The installation scripts,

administrative interfaces and documentation are usually more complete for a

proprietary commercial product than for a free software product of the same

age. While this lack of product completion is irrelevant for technology enthu-

siasts – indeed, it can even be more attractive because the adaptation and ad-

ministration can be more direct and personal – to cross the chasm and reach

the corporate client, free software must have a higher degree of packing and

finishing. According to Woods and Guliani:

"A broad oversimplification about open source versus commercial software is that open
source represents primarily an investment of time, and commercial software represents
primarily an investment of money. Any organization setting out to use open source must
set aside some time for research and experimentation. "

Dan Woods and Gautam Guliani. "Open source for the enterprise"

This time investment for completing an open-source application or selection

of applications offers an important business opportunity both for platform

integrators and developers. Hence, a good symbiosis could be established be-

tween the private sector and non-profit free software projects in which the

investment would be spent on more monotonous work, leaving the more cre-

ative and innovative work to the volunteer community while also allowing

the simultaneous creation of more mature products that are more likely to

attain a high level of adoption.

Furthermore, both the modularity of free software and its coexistence with

proprietary systems can generate serious compatibility problems, which re-

quire painstaking integration. The generalisation of standards will be bene-

ficial for minimising the adverse effects of combining different software ele-

ments.

Technical�certification

The inherent features of the finish of free software also allow for the possi-

bility of certification by integrators and external consultants. This can take

two forms: certification of compliance with international standards or certi-

fication of suitability for specific technology environments. The certifier pro-

vides assurance that the package meets a series of requirements and is legally

responsible for their compliance.

Hence, the certifier provides an intermediary responsible for a set of solutions,

an essential factor for many new technology departments of software con-

sumer companies. Often, when an information technology department ar-

ranges support and maintenance, it is not only hiring a method of resolving

incidents, but also a person or company to which it can attribute the prob-

lems or failures that may arise. The decision to adopt a particular free software

Additional reading

S.�Sieber;�J.�Valor (2005).
Criterios de adopción de las
tecnologías de información y
comunicación. IESE.
<www.iese.edu/en/files/
6_15211.pdf>

GNUFDL • PID_00145049 30 Business models with free software

solution without intermediaries to offer guarantees puts all of the burden of

success or failure on the department itself, which may prefer for the interme-

diary to assume this responsibility.

Training

Training can be a source of easy income. In addition to the fact that the open

development model makes the information on a product available to every-

body, most free software projects lack formal training programs, meaning that

anyone can enter the business. Many established companies whose business

is training have added free software programs to their offer.

Support�and�maintenance

We have already seen how support and maintenance services are an important

source of revenue for companies engaged in the development of a free product,

but they also form part of the offer of companies that only provide horizontal

services, as we shall see below.

As we said earlier, the possible range of service companies is vast, with models

being developed on the basis of specialisation in certain services, a type of

applications, local market or large scale, etc. We will study three typologies in

detail. Firstly, platform distributors, as they were one of the first business mod-

els implemented with free software and are fairly representative of a number

of major companies in the sector. Secondly, we have chosen two examples at

either end of the scale: large integrators and small niche micro-enterprises.

Between the two, we have the other possible business models, which focus on

the provision of services.

3.2.1. Platform distribution companies

The activity of this type of company is concentrated on the integration and se-

lection of components to generate a comprehensive�software�solution. The

diversity of applications and results generated by the free software develop-

ment model requires integrated teams to give cohesion and ensure the com-

patibility of the parts. This has given rise to the emergence of different distri-

butions developed by different actors. This activity is also an obvious poten-

tial business model.

Platform distribution companies use a similar model to application develop-

ment companies and service providers, but the selection�and�integration�of

a�broad�product�base, as opposed to development, lies at the crux of its work.

GNUFDL • PID_00145049 31 Business models with free software

Companies using this model generate and distribute integrated software

packages, mainly for corporate customers. The platform generated is the

company's core product, which generates one major problem: product

differentiation is very difficult because it is freely accessible.

Besides distributing software under a traditional model through the sale of

packaged CDs, these companies often supplement their offer with services

such as installation and quality support, often through a subscription system.

Their added-value is based on reliability and trust, conveyed by the brand that

represents them. They offer to fill in the gaps that a free software product

may have for corporate environments, which seek an appropriate, stable and

reliable solution – even at the cost of features and performance.

Thus, their potential customers will be medium and large enterprises, which

require maturity and stability, professional support and a viable ecosystem of

solutions. The investment in software is amortised over five years, so a com-

pany that is going to invest in software will need to know that – at least for

this period – it will have support for these products. Given the extra costs

associated with switching from one technology solution to another, having

support that lasts beyond the amortisation period is highly desirable.

Hence, generating trust is fundamental to their business strategy and must

include the development of a brand that conveys added reliability to a free

software product. Given that their business model is based on a product freely

accessible to anyone, these companies seek to develop a strong brand as a

differentiating factor that will allow them to gain market shares over the same

or very similar products.

Although these companies do not usually focus on the development of spe-

cific applications, they do often contribute to projects that they draw on by

debugging, and develop new products only when necessary to expand the

market for their product.

New�distributors

New distribution companies have recently emerged, offering more specialised software
bundles for more limited markets. SourceLabs, SpikeSource and Wild Open Source are
examples of such initiatives. SourceLabs, for example, offers certified collections of soft-
ware usually used together, such as Linux, Apache, PHP and MySQL. Wild Open Source,
on the other hand, customises distributions for use in high-performance contexts or
embedded systems. Along with the certified bundle, the companies offer maintenance
and support services for their selection, just like traditional subscription companies.

The main challenge for this type of company will be to define software col-

lections that are wide-ranging enough to maintain a sufficient customer base

while being able to provide support for all elements in the bundle.

Red Hat

The archetypal example of a
platform distributor is Red Hat,
Inc., and this is also the model
followed by Novell with SUSE,
Canonical with Ubuntu, and
Caldera Systems with Caldera
Linux.

GNUFDL • PID_00145049 32 Business models with free software

The SpikeSource case

Company�name Spikesource, Inc.

Head�office Redwood City, CA. (United States)

Website www.spikesource.com

Creation�date 2003

No.�of�people�employed�in�2006 80

Turnover�in�2007�(million)

Corporate data on SpikeSource, Inc. Prepared with statistics from Hoovers (http://www.hoovers.com)

SpikeSource is a representative example of the business potential generated by the lack
of finish of free software products. Set up in 2003 by one of the most important ven-
ture capital firms of the Internet boom – Kleiner Perkins Caufield & Byers – SpikeSource
launched its first products in April 2005. In October 2006, the company announced its
expansion into Europe through a network of local solution providers and technology
partners.

Murugan Pal, founder, summarises the company's activity as follows:

SpikeSource's goal is to facilitate the adoption of open source software in the enterprise
through testing, certification and support services. We innovate, automate and optimize
advanced testing techniques as part of our core competency."

(Murugan Pal. "Participatory Testing: The SpikeSource Approach". http://
www.oreillynet.com/pub/a/network/2005/04/07/spikesource.html)

As differentiating factors with classical integrated solution distributors like Red Hat, the
company highlights its efforts to promote testing automation and its combination of
specific applications that can be installed on different platforms and operating systems.
It includes versions for different operating systems, both free and proprietary, and incor-
porates closed software in some products.

In addition to its bundles, such as SpikeWAMP-1.4, which includes the latest versions of
PHP, MySQL and Apache (for Windows installation), and "SuiteTwo", which integrates a
wide range of embedded collaborative applications, and "Web 2.0" features, it recently
launched a platform for developers on which they can test and integrate their applica-
tions, thus obtaining SpikeSource certification and a better software finish (productisa-
tion) as a result.

The work of this type of company can be very positive in increasing visibility and pro-
moting the adoption of free software solutions, and SpikeSource has tapped into this.
The company makes great efforts to show that its work benefits the free software com-
munity – and that it does not simply exploit it – by including well-known figures from
the world of free software, such as Brian Behlendorf and Larry Rosen, on its adviso-
ry committee as endorsements. It has also developed a website for developers (http://
developer.spikesource.com), where it offers its automated testing services for integration
and compatibility on various platforms.

Nonetheless, the automation�software used by the company combines parts that have
been released with parts that remain closed. In this case, reserving a portion of the code
is a strategy to protect its differentiation and keep competition from comparable services
at bay. This decision reveals that rather than losing revenue from licensing (which, as
we have repeatedly seen in this subject is not a real obstacle), the use of free software
affects the company's possibilities of differentiation – and hence, business. In the case
of SpikeSource, the effort invested in its testing applications will be rewarded not by the
sale of licences for this software but by the protection of its differentiating factor from
other companies offering similar services.

GNUFDL • PID_00145049 33 Business models with free software

3.2.2. Large integrators

Large systems integrators or solution generators are one of the types of com-

pany that stand to gain the most by basing their business on free software,

given the direct cost savings, and the subsequent possibility of reaching more

customers.

Clients usually look for companies that can provide solutions to an informa-

tion and communication technology (ICT) problem and are not concerned

with implementation details. A complete solution will combine hardware,

software and services, making the process easier for the customer, who need

only contact a company to solve its ICT problems and not have to worry about

compatibility between providers. Therefore, everything that the company can

save on software costs by using free software can be transferred to the costs

of services, which will enhance the solution. The company can slash prices to

increase its potential number of customers, or simply enhance its profitability.

This type of large integrator, which generally works on complex projects, can

maintain its prices due to the barriers to the entry of other competitors.

The figure below illustrates this situation, outlining the demand curve for

comprehensive solutions and provider costs.

Demand curve of comprehensive computer services. Sales margins and number of clients. Source:
Dirk Riehle, "The Economic Motivation of Open Source Software: Stakeholder perspectives".
http://www.riehle.org/computer-science/research/2007/computer-2007-article.html)

There are many consulting and selection firms, including Ayamon, Enomaly,

Navica, OpenLogic, Optaros and X-tend. Large integrators include IBM, Sun

and HP.

The IBM case

Company�name IBM

Corporate�data�on�IBM. Prepared with statistics from SoftwareMagazine (www.softwaremag.com) and Wikipedia.

GNUFDL • PID_00145049 34 Business models with free software

Head�office Armonk, NY
(United States)

Website www.ibm.com

Creation�date Its origins date back to 1896. In 1924, it changed its
name to IBM

No.�of�people�employed�in
2007

394,540

Turnover�in�2007�(million) $91,423

Corporate�data�on�IBM. Prepared with statistics from SoftwareMagazine (www.softwaremag.com) and Wikipedia.

Twenty years ago, IBMwas one of the strongest advocates of intellectual property rights
for software. Its argument was that without strong copyright protection, there would be
no incentives for companies to invest in software development.

Now, although it has retained the bulk of its proprietary software, IBM has launched ma-
jor campaigns in support of free software, offering considerable financial contributions
to the development of Linux and other applications, and the release of applications such
as the Eclipse development platform and part of its AIX operating system.

IBM's current business model focuses on the sale�of�high-end�hardware, proprietary
software on Linux and the provision of integration�services�for�corporate�clients. Al-
though IBM has been one of the world's leading software manufacturers, its programs
have usually been marketed as a combined solution with its own hardware. As a result,
the company has little to lose from lack of differentiation in the software that it uses:
given the barriers to competitor entry in mainframes, the use of low-cost software allows
the company to cut its prices and extend its range of customers without undergoing a
loss of differentiation that would significantly increase its competition.

Thus, its use of Linux allows IBM to offer a lower overall price for its hardware and ser-
vices, while also providing a common platform on which to build and sell applications
and special services. Along these lines, we can also mention the savings made by the
company through the use of an operating system with wide prior adoption – in market-
ing, distribution and sales terms – as well as the reduction in risk and investment in de-
velopment. Moreover, the public image benefits obtained have also been significant.

Naturally, IBM's free software activity involves a more complex strategy that affords it
a better competitive position on several fronts. From strategies based on the use of free
software to enhance the marketing of its proprietary products (such as "loss leaders" and
free kernel plus proprietary accessories) to gaining a better position than other big soft-
ware providers.

The use of free software has given IBM more independence than other large companies,
such as Microsoft, and a better position over direct competitors like Sun. The latter has,
for a long time, based its business strategy on the combined sale of hardware plus "better
than average" operating systems and would therefore have more to lose in the event of
cost-cutting and the presence of equivalent low-cost software.

3.2.3. Software services: small and micro-enterprises

Another basic phenomenon sparked by free software is the transfer

of�knowledge�and�technology. Investments in training, development

and technology, both on the scale of large companies and at individual

level, is available through developments that are open to anyone with

an Internet connection and a certain knowledge.

GNUFDL • PID_00145049 35 Business models with free software

This phenomenon can have a major impact on technology transfer between

countries that are more or less developed, and internally, between large multi-

nationals and local micro-enterprises.

The possibility of free access to both the code and decisions on design and

development offers great potential to small technology companies, which can

be in contact with and adopt the most innovative technology backed by large

financial investments.

Given their size, these companies generally base their activities on specific

niches and require only a few customers to stay in business. The possibilities of

market segmentation are endless, but one common factor is that of closer and

more personalised attention (many customers prefer to be the big customer

of a small business than a small customer of a large multinational).

The more relevant companies of this nature include those that base their dif-

ferentiation on the use of free software not only for the benefits we have men-

tioned thus far, but as a statement�of�intent, as yet another element of a busi-

ness logic that seeks not to accumulate profit but to generate self-sustaining

livelihoods through the provision of services that contribute to the develop-

ment and well-being of society.

The inner workings of these companies also often reflect this philosophy and

approach to business, based on horizontality and transparency. Interesting-

ly, Spain's legal framework provides for a concept of business substantially

aligned with what we have described: worker cooperatives, in which there

are no financial backers and the workers themselves manage and control the

company.

Again, the concept of business�ethics is neither new nor unique to free soft-

ware but takes on a special meaning in this type of company. Often, these

small businesses form groups through different types of networks, which is a

key strategy for encouraging support and cooperation between them, in line

with the ethical and political principles on which they are based.

A considerable proportion of the potential customers are other companies

with similar operating principles, organisations with social or political moti-

vations, and government bodies.

Examples of this model include several Spanish companies with a similar

type of operation, which have been uniting in the Ikusnet group (http://

www.grupoikusnet.com/) under the following principles:

"Our methodology is based on cooperation and 'horizontality' in making and implement-
ing decisions, to the extent that the mode of cooperation itself becomes a productive
force that seeks to deliver its effects in the framework of the information and knowledge
society."

GNUFDL • PID_00145049 36 Business models with free software

We can also mention the Madrid-based cooperative Xsto.info (http://

xsto.info), a micro-enterprise with less than ten workers. Born at the heart of

social movements, it was established as a worker cooperative in 2003. This

choice of legal form is, like the use of free software, a statement of intent re-

garding its operating principles, which are complemented by the website, in

line with the following motto:

"There is still time to take part in this social transformation to ensure that it occurs in a
participatory, open, free and democratic way".

Among its customers we find local authorities such as Parla City Council,

and various types of association, including the Federación Regional de Aso-

ciaciones de Vecinos de Madrid (Regional Federation of Neighbourhood Asso-

ciations of Madrid).

Another very representative example, particularly interesting given its age, is

Easter-eggs, which we will now discuss in detail.

The Easter-eggs case

Company�name Easter-eggs

Head�office Paris, France

Website www.easter-eggs.com

Creation�date 1997

No.�of�people�employed�in�2007 15

Turnover�in�2006 €800,000

Corporate�data�on�Easter-eggs. Taken from its website (http://www.easter-eggs.com)

Easter-eggsis a French SME with a consolidated track record that provides services for
free software. Founded in 1997, it offers a wide range of services, from the installation,
administration and security of GNU/Linux systems to the adaptation of applications
and custom developments and consulting, auditing and training. The company offers
services for older free software – and still looks healthy: profitable from the moment it was
created, it now employs fifteen people and obtained a turnover of €800 thousand in 2006.
Its clients include the René Descartes University of Paris (http://www.univ-paris5.fr/) and
Europcar, for which it implemented a GNU/Linux migration programme in 3,500 of its
agencies.

For the company, the decision to provide services for free software was based on ethical
rather than financial principles, and these principles are also what led it to define a very
unique method of business operation. In a manner similar to that of the operation of
Spanish worker cooperatives, Easter-eggs is fully and solely controlled by its employees.
There are no venture capitalists or foreign investment of any sort. An association was set
up to implement this organisational system, the Association of Easter-eggs Employees
(http://www.easter-eggs.org), which holds a 99.8% stake in the company.

These were the foundations on which Easter-eggs built its business differentiation, defin-
ing itself as a "social company" with a central concern for creating a "citizen-based compa-
ny" that responds to the growing aspirations of citizens who are beginning to realise the
limits of consumerism and demand that companies act with purpose. Its operating prin-
ciples include financial transparency (its accounting records are available for download
from its website: http://www.easter-eggs.org/rubrique_10_Comptabilite.html), equal pay
and mechanisms for the involvement and co-responsibility of its employees.

GNUFDL • PID_00145049 37 Business models with free software

As part of its strategy to create networks and bring together small, socially-responsible
businesses to provide services on a larger scale and as a method of joint promotion, in
2002, the Easter-eggs association created the libre enterprise network (http://www.libre-
entreprise.org), which encompasses approximately sixteen French companies offering
free software-based services, all with similar business models.

3.3. Ancillary markets: hardware

One of the first business models described by Hecker, "Widget Frosting" is still

as valid today as it was then. For hardware manufacturers, the development

of software is a necessary expense if they are to sell their products, so any

strategy that will lower the associated costs is desirable. In addition, following

a model of free software development extends the possibilities of portability to

other platforms, thereby increasing the market segment. We saw earlier how

the major providers, which include hardware in their offer, are incorporating

free operating systems as a way of reducing the final costs of the service, thus

increasing their potential customer base.

On this point, it is interesting to note the role that Linux is playing in the new

generation of embedded�devices. We are witnessing a return to the combined

sale of hardware and software in this type of device, which must come with

its specific functionality built-in, often with simple operating systems with

limited functionality. Nonetheless, the possibility of using embedded Linux

has increased the business opportunities for this type of hardware.

The use of free software offers significant advantages in terms of cost

savings, shorter development periods (essential in a market governed by

short life cycles), ease of development subcontracting (due to a highly

modular existing base) and the possibilities for innovation introduced

by setting up a community around the product. Moreover, the use of

free software gives manufacturers significant independence from the

Windows Mobile and Symbian platforms, and hence, from the agendas

of Microsoft and Nokia.

Currently, Linux-based operating systems are the most common in embedded

systems and their adoption by consolidated companies of the sector, such as

Wind River, points toward the continuation of this trend. In the smartphone

market, Linux increased from 3.4% in 2004 to 14.3% in 2005, while embedded

Windows only grew from 2.9% to 4.5% in the same period.

Furthermore, the existence of software at an affordable price for a large audi-

ence also generates an ecosystem of needs around it, which the hardware of-

ten forms part of. The Asterisk IP voice platform, for example, allows many

businesses to use switchboards, with a significant reduction in costs. However,

it requires users to purchase certain hardware elements, such as IP terminals,

Asterisk cards, routers, recording systems, etc.

Recommended website

For more information:
Alejandro Lucero, "Sem-
inario UAM: Linux en
Sistemas Empotrados".
www.os3sl.com/Documents/
Seminario_UAM_I.pdf.

GNUFDL • PID_00145049 38 Business models with free software

The manufacturers of these products can benefit from the spread of software

like Asterisk, so they will have much to gain from participating in and con-

tributing to its development. Likewise, software development companies can

earn money by selling hardware and related services, as is the case of Digium,

the company chiefly responsible for the development of Asterisk.

There are also other spaces and niches that can be exploited through this tech-

nology, such as those tapped by Avanzada7. This Málaga-based company sells

the necessary hardware for the implementation of Asterisk, but acknowledges

that it is neither a manufacturer nor a major distributor. Its differentiation

stems from the provision of free support services following the sale of the de-

vices. Avanzada7 has also established a partnership with Digium, the compa-

ny responsible for the development of the software, creating a trusted network

that extends to other companies wishing to implement Asterisk for end cus-

tomers. Thus, it has set up a pyramidal network of the type described above

based on the needs generated by free software, which it exploits through coope-

tition strategies.

The Chumby case

Company�name Chumby Industries, Inc.

Head�office San Diego, CA
(United States)

Website www.chumby.com

Creation�date 2005

No.�of�people�employed�in�2007

Turnover�in�2006

Corporate data on Chumby Industries, Inc.

Chumby�Industries was set up with the aim of creating and marketing the "Chumby",
launched in August 2006. This wireless (Wi-Fi) device was designed to replace the clock
radio and can connect to the "Chumby Network", where it can download different types
of information. It can play podcasts, Internet radio, and some videos. The device runs
Linux and Flash Lite, an Adobe program with small interactive applications or "widgets".
It does not have a browser and contents can only be downloaded through widgets, each
of which has its own specific function: read the latest news from a blog, download the
latest photos from a gallery, etc.

The Chumby hardware and software are free and both its schemas and printed circuit
boards – and even its source code – can be downloaded. The company's marketing activity
is based on its openness: the Chumby can be customised at any level by changing the
outer casing and (literally) sewing on extensions to taste, creating new widgets or hacking
the hardware. Thus, the device is not only sold as "user-friendly", it also opens the door to
the expansion of its features beyond the control and financing of the company, leaving
it to evolve into what every user wants it to be.

Nonetheless, Chumby's business model is not aimed at obtaining revenue from hard-
ware, and the price of the device is relatively low. Steve Tomlin, founder and CEO of the
company argues that several business models were possible with Chumby: they could
have charged more and followed the model of a traditional hardware vendor, with the
problems of recurring revenue that this would generate, or they could charge little for
the device, but then charge for content subscriptions. However, the company preferred

GNUFDL • PID_00145049 39 Business models with free software

a third way: to obtain the revenue needed to just cover costs with sales and generate its
profits through advertising.

To secure this new field of business, Chumby is not 100% open and there are constraints
on its use, both in the hardware and on the "Chumby Network", thus guaranteeing the
business model.

"Chumby�network"�access

After purchasing a Chumby, the user must register on the company website to access the
widgets, accepting their terms of use. These terms allow anybody to add new widgets with
any type of information they wish, giving their permission to distribute this information
to any device connected to the network. However, restrictions are placed on permitted
content, and inappropriate content (racist, violent, sexist, spam, etc.) is banned, as is
commercial content:

"Prohibited�Content includes Content that: (...) except as expressly approved by Chum-
by, involves commercial activities and/or promotions such as, without limitation, con-
tests, sweepstakes, barter, advertising, or pyramid schemes." (http://www.chumby.com/
pages/terms)

A payment must therefore be made to obtain authorisation for advertising content. The
terms and conditions also warn that the user will receive advertising when he/she con-
nects to the Chumby network.

Although widgets can technically be incorporated outside the Chumby network using
USB devices, the company is confident that most of the contributions will remain within
its network, thus attracting enough content to generate value from the number of people
and contributions on it.

The�device

Chumby allows access to the schemas and PCBs of its device. However, manufacturers
seeking to use its designs and incorporate them into their own products have to pay the
company to licence their new product. In addition, they have to accept that, besides any
other networks to which they connect, they will also incorporate the Chumby Network.

To summarise, Chumby acknowledges that the value of its device lies in the content, in a
manner similar way to O'Reilly in "Open Source Paradigm Shift" and others. Its strategy,
besides characterising the product by its openness, is to attract as many people as possible
to the network in an attempt to make it a benchmark network for small mobile devices
of this nature. However, instead of selling content through subscriptions, it has decided
to capitalise on this value through advertising.

For the company, the use of open hardware and software is a key strategy for the spread
and adoption not just of its device but of the network that it has created to provide
content. Moreover, its openness gives it a clear differentiation and commercial edge over
similar products like Apple's iPod Touch and iPhone.

3.4. Other ancillary markets

The increased spread of free software, both due to its form of development and

its use, generates other related markets that have been exploited by diverse

companies:

• Community�and�development: perhaps the most obvious examples are

those that provide hosting services and collaborative tools for software

projects, such as SourceForge, CollabNet or Freshmeat. There has also been

a proliferation of code search engines, including Google Code, Koders,

Krugle and Codase.

• Legal�certification: companies offering this type of certification are also

becoming increasingly relevant. They ensure that a software or particular

combination is legally possible and are familiar with the licensing prob-

GNUFDL • PID_00145049 40 Business models with free software

lems it could have. This service is provided by the companies we saw ear-

lier, such as the creators of platforms and bundles, like SpikeSource, but

others have sprung up that focus entirely on legal issues, such as Black

Duck and Palamida.

• Sale�of�books: O'Reilly and his books are one of the most often cited ex-

amples in this category.

• Merchandising: we should not overlook the importance of merchandis-

ing as a supplementary or even main form of financing. Examples in-

clude ThinkGeek, a subsidiary of SourceForge, which contributes revenue

through Internet sales of various types of product for "geeks": from t-shirts

and mugs to a range of gadgets.

GNUFDL • PID_00145049 41 Business models with free software

Summary

This module has looked in detail at the diverse valid and viable business mod-

els based on free software. The growth of companies that focus entirely on its

exploitation and the redirection of the strategy of software multinationals is

conclusive proof.

Initially, we described different classifications proposed by a range of authors

over time:

• The classifications of Hecker and Raymond, based on the observation of

companies that used free software as part of their business models.

• The classification of the European Working Group on Libre Software,

based on the business financing model.

• Daffara's classification, based on empirical studies.

Finally, we proposed and developed our own business models proposal:

• Specialist/vertical, focusing primarily on the free software product and

which can adopt mixed dual licensing models, proprietary accessories, dis-

tributed product sales or service provision models for the product, such

as software as a service.

• Associated services such as custom developments, product selection, in-

stallation, integration, technical certification, training, support and main-

tenance, which may be oriented towards the distribution of platforms,

large scale integration or the service of small businesses and micro-enter-

prises.

• Ancillary hardware markets, which use free software to complement their

main business: the sale of physical products or the business of contents

accessible from a particular hardware.

• Other ancillary markets, such as collaborative tools, legal certification, the

sale of books or merchandising.

GNUFDL • PID_00145049 43 Business models with free software

Bibliography

Augustin, L. (2007). "A New Breed of P&L: the Open Source Business Financial Model".
Open Source Business Conference (OSBC)Metcalfe, Randy. <http://www.osbc.com/live/im-
ages/13/presentation_dwn/A_New_Breed_of_P_and_L.pdf> [Consulted in February 2009]

Mickos, M. (2007). "Open Source: why freedom makes a better business model". Open
Source Business Conference (OSBC). <http://www.osbc.com/live/images/13/presentation_dwn/
Keynote-Open_Source_Why_Freedom.pdf> [Consulted in June 2008]

West, J. and Gallagher, S. (2006). "Patterns of Open Innovation in Open Source
Software". In: Henry Chesbrough; Wim Vanhaverbeke; Joel West (eds.). Open Innova-
tion: Researching a New Paradigm (pp. 82-106). Oxford: Oxford University Press. <http:/
/www.openinnovation.net/Book/NewParadigm/Chapters/index.html> [Consulted in June
2008].

Capiobanco, F.; Onetti, A. (July 2005). "Open Source and Business Model Innovation.
The Funambol case". In: M. Scotto; G. Succi (eds.). Proceedings of First International Conference
on Open Source (OSS2005) (pp. 224-227). Genoa. <http://oss2005.case.unibz.it/Papers/4.pdf>
[Consulted in June 2008].

Riehle, D. (2007). "The Economic Motivation of Open Source Software: Stakeholder per-
spectives". IEEE Computer (vol. 4, no. 40, pp. 25-32). <http://www.riehle.org/computer-sci-
ence/research/2007/computer-2007-article.html> [Consulted in February 2009]

Comino, S.; Manetti, F. M. (2007). Dual licensing in open source markets. Università Degli
Studi di Trento, Department of Economics. <http://www-econo.economia.unitn.it/new/pub-
blicazioni/papers/18_07_comino.pdf> [Consulted in June 2008].

Daffara, C. (2007). Business models in FLOSS-based companies. Conecta Research, 2007.
<http://opensource.mit.edu/papers/OSSEMP07-daffara.pdf> [Consulted in June 2008]

Pal, M. (July 2005). "Participatory Testing: The SpikeSource Approach". O'Reilly Net-
work. <http://www.oreillynet.com/pub/a/network/2005/04/07/spikesource.html> [Consult-
ed in June 2008]

Kelsey, J.; Schneier, B. (June 1999). "The Street Performer Protocol and Digital Copyrights".
First Monday (vol. 4, no. 6). <http://www.firstmonday.dk/issues/issue4_6/kelsey/> [Consulted
in June 2008]

Rasch, C. (June 2001). "The Wall Street Performer Protocol". First Monday (vol. 6, no. 6).
<http://www.firstmonday.org/issues/issue6_6/rasch/index.html> [Consulted in June 2008]

Daffara, C.; Barahona, J. B. et al (2000). "Free Software/Open Source: Information So-
ciety Opportunities for Europe?" Working paper. <http://eu.conecta.it/paper/> [Consulted in
February 2009]

Lucero, Alejandro. "Seminario UAM: Linux en Sistemas Empotrados". <www.os3sl.com/
Documents/Seminario_UAM_I.pdf> [Consulted in June 2008]

Raymond, E. (1999). The Magic Cauldron <http://catb.org/~esr/writings/magic-cauldron/>

Spanish translation in: <http://gnuwin.epfl.ch/articles/es/magiccauldron/es-magic-caul-
dron/es-magic-cauldron.html> [Consulted in February 2009]

Hecker, F. (1998). Setting Up Shop. The Business of Open Source Business <http://hecker.org/
writings/setting-up-shop> [Consulted in February 2009]

Metcalfe, Randy (2006). Open Source Business: Differentiation and Success <http://www.oss-
watch.ac.uk/resources/businessmodels.xml> [Consulted in February 2009]

Case studies

50 Open Source Success Stories in Business, Education, and Govern-
ment <http://www.blogcrm.com/50-open-source-success-stories-in-business-education-and-
government.php>

Red Hat and J. Boss. "Is Open Source viable in Industry? The case of Red Hat and JBoss".
<http://www.whyfloss.com/es/conference/madrid08/getpdf/68>

GNUFDL • PID_00145049 44 Business models with free software

Avanzada7. "Business models based on Asterisk: The case of Avanzada7". <http://
www.whyfloss.com/es/conference/madrid08/getpdf/64>

Openbravo. "Openbravo: keys to success in free software application development". <http:/
/www.whyfloss.com/es/conference/madrid08/getpdf/49>

Liferay. "Liferay Enterprise Portal: The project, the product, the community and how to ex-
tend it". <http://www.whyfloss.com/es/conference/madrid08/getpdf/66>

Various cases. <http://www.opensourceacademy.gov.uk/solutions/casestudies>

Developing
free software in
companies

Amadeu Albós Raya

PID_00145047

GNUFDL • PID_00145047 Developing free software in companies

© 2009, FUOC. Se garantiza permiso para copiar, distribuir y modificar este documento según los términos de la GNU Free
Documentation License, Version 1.2 o cualquiera posterior publicada por la Free Software Foundation, sin secciones invariantes ni
textos de cubierta delantera o trasera. Se dispone de una copia de la licencia en el apartado "GNU Free Documentation License" de
este documento.

GNUFDL • PID_00145047 Developing free software in companies

Index

Introduction... 5

Objectives... 6

1. Free software production.. 7

1.1. Free software production .. 7

1.2. The free software project .. 9

1.3. Project management ... 11

2. The user community... 14

2.1. Community management ... 14

2.2. Community features ... 17

2.3. Quality management .. 19

2.4. Legality and contributions .. 21

3. Case study... 24

3.1. The company .. 24

3.2. Products ... 25

3.3. The user community ... 25

3.4. Positioning and evolution .. 27

Summary.. 29

Bibliography... 31

GNUFDL • PID_00145047 5 Developing free software in companies

Introduction

In this module, we delve into the world of free software production and its

most relevant features for the product, company and user community.

To begin with, we discuss the development of free software from the point

of view of the project, considering the main aspects affecting the population

and management of the project, and the participation of the user community

in a variety of aspects.

The free software project formalises the relationship between the company

and the user community. The adaptation of the specific features of this rela-

tionship is essential to achieving the aims of the project.

We then move on to describe the specific features of the free software user

community and its management by the company. This management comple-

ments the production methodology and implements the relational strategy

discussed earlier.

Finally, the module concludes with a case study of a real company that pro-

duces free software.

This module is structured as a guide for external reading, the aim of which is

to provide more detail on the features of the various aspects that emerge and

which are relevant to free software business production.

GNUFDL • PID_00145047 6 Developing free software in companies

Objectives

After completing this module, students should have achieved the following

aims:

1. To be familiar with the methodology of free software production.

2. To understand the importance of the user community for the develop-

ment of products based on free software.

3. To identify and analyse the relevant factors affecting the success of free

software production.

4. To understand the importance of formalising a methodology to comple-

ment the efforts of the company and the user community.

5. To obtain a deeper understanding of the direct and indirect implications

of carrying out a development project based on free software.

GNUFDL • PID_00145047 7 Developing free software in companies

1. Free software production

In this first section, we will focus on the production of free software from

the perspective of its development or creation, i.e. without considering the

possible business models that exploit it for profit.

Several subjects of this Master's degree, particularly those on software produc-

tion1, discuss the technological process characterising free software develop-

ment at length.

This technological process supplements the methodologies allowing us

to formalise a viable cooperative project that will last over time. In

this sense, the cooperation of the user community on the free software

project is crucial for obtaining a critical mass of users to enable the

project to be viable.

(1)Introduction to software devel-
opment, Software engineering in
free software environments and
Advanced concepts of software de-
velopment.

Consequently, many of these methodologies and actions are designed to offer

support and guarantees to relations between the project and the user commu-

nity. To understand the importance of this relationship, we can simply visit

the resources offered by the more popular free software projects to the user

community.

To develop these concepts, over the next few sections we will describe three

complementary points of view. First of all, we will consider some basic ideas

on free software production. We will then briefly detail the main steps to take

to implement a project based on free software. Lastly, we will detail the main

aspects of free software project management.

1.1. Free software production

Popular projects

For example,
OpenOffice.org (http://
contributing.openoffice.org/
) and Mozilla (http://
www.mozilla.org/contribute/).

The production of free software, like the production of any software,

responds to the need to solve a specific2 technology problem.

Although the technological process of refining and developing a free software

application may share many similarities with an application based on propri-

etary software, the difference marked by the openness of the model gives it a

special type of operation. In other words, the open and cooperative nature of

its production affects the structure of quantitative and qualitative evolution

down the versions.

(2) For example, to add function-
ality to an application or to trou-
bleshoot malfunctions.

GNUFDL • PID_00145047 8 Developing free software in companies

Many authors have written about the specifics of producing free software.

Since it is not the aim of this module to detail or describe these features at

length, given that they are comprehensively dealt with in other subjects, we

will focus here on pointing out some of the more interesting ones in our case.

To do so, we will consider some of the concepts in Eric S. Raymond's paper The

Cathedral and the Bazaar, which analyses the special features of free software,

particularly GNU/Linux.

• The�origin�of�production

Broadly speaking, the production of free software emerges from the par-

ticular needs of the user or developer in his or her daily activity. In other

words, collaboration on the development of the software begins when we

look for and find a problem that we want or need to resolve.

• The�user�community

The free software user community, which includes both end users and de-

velopers and programmers, is the pillar that gives meaning to the defini-

tion of free software development.

Treating users as partners in the production project is the easiest way to de-

bug and improve the code quickly (if the collaborator base is big enough).

Thus, collaborators are one of the most valuable resources for the devel-

opment of the application, so it is also helpful to recognise good ideas and

the solutions they provide.

• Versions�of�the�application

One of the features of free software production is the reuse and rewriting

of the original code to create a new code that is either error-free or which

has new features or improved performance (among other aspects).

Moreover, free software development projects encourage the quick and

regular release of the code, which means that the project activity is dy-

namic and continuous.

• Coordination�of�production

The individual – or individuals – who coordinate/s the project must be

able to manage the global potential of the user community, guiding the

project's evolution without coercion and taking advantage of the resources

and synergies offered by networks such as the Internet.

The legacy of the application's code and coordination management are

important for the future of the free software development project. The

choice of a successor to control and manage production should not be left

to chance.

Recommended website

E.�Raymond (1997). The
cathedral and the bazaar
(http://www.catb.org/~esr/
writings/cathedral-bazaar/).

Early stages of production

The bulk of the foundations of
free software are based on the
publication of specific adapta-
tions or developments made
by workers in the performance
of their daily work.

GNUFDL • PID_00145047 9 Developing free software in companies

1.2. The free software project

In addition to the technological and functional considerations of ap-

plications based on free software, one of the primary aims of any free

software project is to disseminate the application or obtain a critical

mass of users.

To put it another way, it is not very helpful for the future of the project if the

generated code is not known and applied by potential users, even if specific

problems or shortcomings have been addressed. This is also a necessary aim

for its subsequent maintenance and evolution over time. In the case of free

software, fulfilment of this aspect is essential for the creation of a stable and

lasting user community.

Several guides have been written that, to a greater or lesser extent, contribute

the necessary concepts for the creation and management of projects based

on free software. In this section, we will develop this issue using Benjamin

Mako's Free Software Project Management HOW TO article, which reviews the

main features of the project from a practical angle.

Launch

Before launching a project based on free software, it is very important to design

a solid structure that will withstand the subsequent development process with

sufficient guarantees.

In general, the basic structure of the project must take into account the fol-

lowing:

• The need to create a new project, either with its own ideas and aims or

through existing, related projects.

• The definition of the main features of the application (functionality, li-

censing, numbering, etc).

• The basic infrastructure to support dissemination of the new project and

collaboration on its development (website, contact e-mail, etc).

Developers

Recommended website

B.�Mako (2001). Free Software
Project Management HOW TO
(http://mako.cc/projects/
howto).

GNUFDL • PID_00145047 10 Developing free software in companies

Once the project has been launched, the next aim will be the integration and

consolidation of the users and developers of the application. We must create

policies and strategies allowing us to define and structure the collaboration

of the latter.

Cooperation policies must meet two main aims:

• The coordination of internal and external production, including the del-

egation of responsibilities and protocols of acceptance for contributions.

• Production management, such as the structure of development branches

and their associated repositories.

Users

With products based on free software, the users are often developers too (and

vice versa). One of the main aims to take into account then are application

tests, be they functional, operational, quality, etc.

Support�infrastructure

The daily activity of a project based on free software could not be carried out

without a support infrastructure adapted to its cooperative aims.

The key actions in this regard are carried out during the project launch. How-

ever, once it is up and running, we will need to adapt, improve and supple-

ment the existing resources in line with the progress of the project.

The�application

Undoubtedly the most important component of the project is the application,

on which the rest of the aspects considered are based. One of the key features

required by an application is for the user to have sufficient guarantees on the

performance of each version released.

The release of versions is a sensitive issue that requires careful thought. Broadly

speaking, we need to consider the following:

• Control of revisions for functionality and debugging (alpha and beta ver-

sions, candidate distribution, etc).

• When to launch the full version, i.e. when the code will be ready to offer

guarantees that we and the users expect.

• How to release the version (packaged, source code, binary, etc).

Usual resources

Some of the most common
resources in free software
projects are: documentation,
mailing lists, bug tracking sys-
tems and versions, forums,
chats, wikis, etc.

GNUFDL • PID_00145047 11 Developing free software in companies

Dissemination�of�the�project

Lastly, as we initially explained, raising awareness of the project is important,

but this task should be carried out taking into account whether we will want

to reinforce its foundations over time.

As the project progresses, we need to think about publicising it in free software

mailing lists or on Usenet, including the project in other public portals (such

as Freshmeat or SourceForge), or advertising new versions of the application in

the project's own mailing lists.

1.3. Project management

In this section, we will describe in detail the aspects of project management

that, as founders of the same, we must keep in mind to guarantee success.

The concepts we describe in this section supplement those of the above sec-

tions, since they allow us to specify and improve the various actions consid-

ered. Hence, it is possible to find direct and indirect coincidences with these

arguments.

To indicate the basics of the management of projects based on free software,

we will take into account the considerations set down in Karl Fogel's Producing

Open Source Software, particularly Chapter 5, entitled "Money".

Funding

The special features of free software projects mean that many contributions

are informally subsidised (for example, when a company employee publishes

the adaptations it has made to the code during his/her daily activities).

Donations and grants are also made, contributing direct income to keep the

project going, but we must take into account the management of these funds,

since much of the support afforded to a free software project is based on the

credibility of its participants.

Types�of�participation

There are many types – and possible combinations – of financial participation

in a free software project. This funding model also influences aspects that

depend not only on the project but also on its environment and context of

action.

Recommended website

K.�Fogel (2005). Producing
Open Source Software: How to
Run a Successful Free Software
Project (Chapter 5 "Money").
(http://producingoss.com/
en/money.html).

GNUFDL • PID_00145047 12 Developing free software in companies

Broadly speaking, participation in a free software project is related to the col-

laboration of its participants, the business model exploited by the company

that promotes it (where applicable), the marketing activities undertaken, the

licensing of the products involved and the donations made.

Open-ended�contracts

The application's team of developers is very important for the development

of the project and its future evolution. The stability and permanence of the

participants in their posts of responsibility will strengthen the foundations

and credibility of the project vis-à-vis the user community.

Decentralisation

One of the most relevant – and desirable – features of free software user com-

munities is the distribution and decentralisation of the decisions taken in the

project.

Hence, the project organisation should consider this structure as a way to mo-

tivate and strengthen the community of application users, ensuring that the

consensus emerges from interaction between its members.

Transparency

The above aspect of decentralisation gives us an idea as to the transparency

and justification that should exist in the relationship between the project and

the community.

A stable project

Credibility is essential for all
actors directly or indirectly in-
volved in the project, since
this cannot be transferred to
substitutes. Moreover, loss of
credibility can affect the fu-
ture of the application and the
project to varying degrees, so
we need to take the appropri-
ate measures to actively moni-
tor and manage the project.

Both the aims of the project and lines of evolution of the application must be

clear and well known to all those involved in it. The influence of the founder

on future behaviour must be exercised in a sincere and transparent way in

order to guarantee the credibility of the project3.

Credibility

Project credibility (both overall and of its individual members) has cropped

up in a number of the issues we have already discussed. Its relevance is closely

related to the free software user community and it is an important prerequisite

for maintenance of the project over time.

Money or a hierarchical position cannot generate the necessary credibility in

the actions of individual members at any given time. In other words, the es-

tablished methodology, procedures or protocols, or the workings or operation

must be the same for everybody, without exception.

Contracts

(3)One example is the Open-
bravo manifesto (http://
www.openbravo.com/es/about-us/
openbravo-manifesto/).

GNUFDL • PID_00145047 13 Developing free software in companies

Employee hiring is another aspect to take into account, particularly in free

software projects, due to its impact on structure and operation. We need to

ensure that all of the details and processes of recruitment are open and trans-

parent.

In fact, it is important to review and approve these changes with the collab-

oration of the user community, to the extent that, in some cases, it may be

preferable or desirable to contract developers directly from the community

with write permissions on the official repository (committers).

Resources

Free software projects are based not only on the evolution and maintenance

of the code of an application based on free software; they must also consider

additional aspects of support.

Additional resources

This is the case of the quality management of the code produced, the legal protection
of contributions, the documentation and utility of the application, and the provision
of infrastructure resources for the free software community (websites, version control
systems, etc).

These resources can generate significant differences in the dissemination and

popularisation both of the application and of the project in the free software

user community.

Marketing

Lastly, although we are dealing with a project based on free software, we

should implement marketing measures for the dissemination and popularisa-

tion of the application and of the project as a whole.

Hence, we must remember that the full workings of the project are in the pub-

lic eye and that each of the claims made may be easily demonstrated or proved

wrong. The establishment of measures to control the image and operation of

the project must enable it to gain credibility, transparency and verifiability.

These measures include the importance of maintaining an open, honest and

objective policy on rival projects. Firstly, because it encourages a certain value

for the user community, and secondly, because it fosters the development of

coopetition strategies with aligned projects.

GNUFDL • PID_00145047 14 Developing free software in companies

2. The user community

As explained in the first section of this module, the role of the free software

user community is very important in the paradigm of free software develop-

ment.

Both the users and the developers who form part of the community col-

laborate on the maintenance, support and evolution of the application

over time, thereby ensuring the cohesion and stability of the project.

Consequently, their participation is essential for securing the project

aims and should be considered as such by any money-making organi-

sation seeking to exploit a business opportunity based on the produc-

tion of free software.

In this sense, the relationship between community and business should be

founded on the credibility and transparency of all actions and decisions taken,

so that both parties can benefit from the relationship. Not surprisingly, the

company's positioning with respect to products based on free software must

be well defined and structured to encourage the creation of a community of

collaborators around it.

Note that the user community is a dynamic organisation that evolves over

time, so it will be necessary to set up management methodologies in order to

maintain an optimal relationship. This management includes the establish-

ment of procedures to identify the current status of the community, to assess

the quality of contributions to the project by members, and to define legal

aspects affecting these contributions.

The following sections will study each of these aspects in turn.

2.1. Community management

To secure the aims of the project, a company that undertakes a free

software development project must organise its relationship with the

user community carefully.

GNUFDL • PID_00145047 15 Developing free software in companies

In the first section of this module, we looked at the main aspects underpinning

a free software project. If a company acts as project founder, it will need to

establish and organise a strategy to suit the business aims, though bearing in

mind that it has to compensate for the collaboration it hopes to obtain from

the user community.

Hence, as with any other free software project, issues such as credibility and

transparency, among others, have a very important role in creating a commu-

nity of users around the project.

Ben Collins-Sussman and Brian Fitzpatrick have identified and classified the

different Open Source strategies that can be adopted by a company based on

free software development at the OSCON 2007 conference entitled "What's

in it for me?".

This classification characterises the two main components of the relationship

between company and community:

• On the one hand, the orientation, structure and general operation of the

project, and the company's responsibility in this.

• And on the other, the benefits and drawbacks for the company and the

user community resulting from the selection of a specific strategy to im-

plement the project.

Hence, the work of Collins-Sussman and Fitzpatrick is a guide to best prac-

tices in formalising a healthy relationship between the company and the user

community.

In the following sections, we will briefly introduce the main features of this

Open Source strategy classification.

Fake�Open�Source

Recommended website

B.�Collins-Sussman;�B.�Fitz-
patrick (2007). "What's in it
for me?"
(http://www.youtube.com/
watch?v=ZtYJoatnHb8).

This strategy is based on opening or releasing the application's source

code under a licence not approved by OSI.

It is not really an Open Source strategy because not only are thebenefits4 lost,

but some members of the community may even boycott the project.

Nonetheless, the project can obtain media coverage and attract attention with

a relatively low effort and cost.

Throw�code�over�the�wall

Recommended website

Open Source Initiative (http:/
/www.opensource.org/).

(4)For example, software enhance-
ment, project credibility or good
relations between companies and
users.

GNUFDL • PID_00145047 16 Developing free software in companies

This is a similar strategy to the one above except that this time the

company opens or releases the code under an OSI-approved licence,

although it is still not concerned or does not accept responsibility for

the future of the project.

In other words, by opening up the code and forgetting about it, the compa-

ny portrays an image of poor credibility, since it releases an application for

which there is no user community to keep the project alive. In this case, alter-

native communities may spring up to develop the software outside the busi-

ness goals.

Develop�internally,�post�externally

This strategy is based on developing the application internally within

the company and publishing the progress in a public repository.

This time, the company improves both its public relations with the user com-

munity and its credibility in the world of free software. For its part, the com-

munity could collaborate on the project from time to time. Nonetheless, a to-

tally internal development will encourage the development of parallel com-

munities that do not follow the business calendar (which generates an ele-

ment of distrust).

Open�monarchy

This strategy is based on making public both discussions and the repos-

itory of the application, although the users with the rights to it are from

the company.

In this case, the credibility and transparency of the companies and the input

from the community are improved (which results in better code) but the com-

pany still has the final say on all decisions made. This constitutes a risk to the

long-term maintenance of the community, including the possibility of a fork

in the project.

Consensus-based�development

This strategy exploits almost all possible relations between company

and community, given that virtually everything is done in public.

GNUFDL • PID_00145047 17 Developing free software in companies

In this case, the project is based both on distributed and decentralised deci-

sion-making and on meritocratic work systems among collaborators.

These features produce a model with high quality volunteers that is sustain-

able in the long run, since the company gains in credibility, transparency and

reliability in the eyes of the community and other free-software companies.

Nonetheless, the short-term benefits are limited and the workload is signifi-

cant. In this case, the role of the project leaders is relevant for the strategic

operation of the entire organisation.

2.2. Community features

The community of free software users is a dynamic and evolutionary organi-

sation in the sense that there are several factors that influence and shape its

situation and future trends to varying degrees.

When considering a free software project, it is desirable to create an

early and strong user community around the application, given that

part of the success and aims of the project depend on it.

Once the community has been created, it is important to schedule activities

that will not only keep it stable but also enlarge and evolve it, at least at the

same pace as the product. Before we take any action in this regard, we need to

ascertain the current status of the user community and its recent evolutionary

trend in relation to the project.

Accurately identifying the current status of a user community can be relative-

ly complicated in practice, mainly due to its qualities of distribution and de-

centralisation5.

Nonetheless, we can take into account a series of indicators that will allow

us to establish a sufficiently realistic approach for making decisions on this

subject.

The article "Assessing the Health of a FLOSS Community," by Crowston and

Howison, describes a simple but effective guide to identifying and assessing

the status of a community of free software users. This guide considers the main

indicators that should be taken into account when assessing the health of the

community and, by extension, the free software project.

Recommended website

K.� Crowston;� J.� Howison (2006). "Assessing the health
of a FLOSS Community" (http://floss.syr.edu/publications/Crowston2006
Assessing_the_health_of_open_source_communities.pdf)

(5)This problem can be conveyed
and illustrated with the problem
of assessing the situation of a dis-
tributed or decentralised system at
a given point in time (snapshot).

GNUFDL • PID_00145047 18 Developing free software in companies

The following sections will briefly introduce some of their findings.

Life�cycle�and�motivations

Diverse authors concur that projects are initiated by a small group of founders

before being structured and publicly developed.

Once the project has been launched, a second phase should begin allowing for

the progressive refinement of the initial concept. In other words, the sharing

of ideas, suggestions and knowledge must revolutionise the original concept.

This process cannot be completed without the cooperation of the free software

community.

Moreover, the participation of members of the community in the project is

chiefly motivated by intellectual development, the sharing of knowledge, in-

terest in the application, the ideology or philosophy behind the project or free

software, reputation and community obligation.

Structure�and�size�of�the�community

The user community of an application based on free software can be structured

in many ways, taking into account the actions and decisions of the project

founders and the features of the application and/or its production.

In general, we can consider an application's user community to be healthy if it

has a functional hierarchical structure aligned with its aims around an active

core of developers.

Broadly speaking, we can identify the following types of member in a project:

• Developers of the application kernel, with write permissions on the repos-

itory and a significant history of contributions to the project.

• Leaders of the project, who motivate and lead the project and its user

community to maturity and stability.

• Developers in general, who contribute code but have no write permissions

on the repository. They often perform review tasks.

• Active users, who test the application, report bugs, draft documentation

and link the project up with passive users, among other activities.

Development�processes

Hierarchical structure

This concept can be com-
pared to the structure of the
layers of an onion (onion-
shaped), whereby the most ac-
tive members of the project
are at the core and the less
participatory members are
found in the outermost layer.

Note

This initial classification of ty-
pologies is not a closed struc-
ture, since each project will
adapt it to suit its particular
features.

GNUFDL • PID_00145047 19 Developing free software in companies

The process of free software development can often be inadequately for-

malised in projects, mainly due to the absence of roadmaps, explicit work as-

signment or the lack of prioritisation in the application's features.

The organisation of the project is relevant to the functioning and coordina-

tion of production, although a certain degree of duplication of effort could

be considered a positive sign of the relationship and involvement of the com-

munity with the project.

Likewise, the cycle of evaluation and subsequent acceptance of contributions

from community members to the project provides accurate information on

its health. For example, the rejection of a contribution can reveal a cohesive

and qualitative vision of the project in the long run.

2.3. Quality management

The quality of free software has sometimes sparked debate between its advo-

cates and detractors, particularly concerning aspects such as the openness of

the development model or the skills level of collaborators who contribute to

the project, for example.

As with any software project, free software production should establish

measures for quality control throughout its life cycle. In other words,

we must be able to assess its quality and compare it with the levels

expected at any stage of production or exploitation and from any angle

(founders, users or community).

While the openness and decentralisation of the model of free software devel-

opment allows for quality control and management mechanisms, they are not

a solution in themselves and planning should not be overlooked because of

these features.

To develop the quality aspects of free software production, we will study the

Dhruv Mohindra's article "Managing Quality in Open Source Software", which

conducts a detailed analysis of quality control in free software environments.

In the subsequent sections, we will review the main ideas of the article.

Quality�in�free�software

In general, the quality of a software solution can be assessed both by its archi-

tecture or internal design and by the functionality it provides to the user.

Recommended website

D.�Mohindra (2008). "Man-
aging Quality in Open
Source Software"
(http://www1.webng.com/
dhruv/material/managing
_quality_in_oo.pdf).

GNUFDL • PID_00145047 20 Developing free software in companies

The specific features of openness and decentralisation of the free software de-

velopment model create an infrastructure that allows for quality management

policies to be established through the identification and resolution of prob-

lems, among other aspects. Still, a lack of clarity and/or structure in produc-

tion processes can sometimes generate unexpected results.

Assessing�quality

There are several formal methodologies and metrics for assessing the func-

tional quality of an application. Quantifiable metrics depend largely on the

typology of the software itself, so they must be chosen in accordance with the

features and aims of the application.

The free software community plays an important role in non-quantifiable

quality: firstly, in the tests performed by the quality team, and secondly, in the

activity of the users of the application, who report evidence of malfunctions

or for product enhancement.

In this sense, the decentralised and distributed nature and operation of the

user community is important for increasing the quality guarantees of the pro-

duction process.

Control�and�review

An important factor in end product quality is the control and review of the

entire development process. In general, free software production projects use

version control systems to efficiently and effectively support the evolution of

the diverse project components.

There are different ways to organise the control and review of the evolution

of the software and its branches of development and repositories, among oth-

er aspects. In all events, though, it is a good idea to adapt the production

methodology and systems for the control and review of changes to the specific

features of the project and the product being created.

Free�software�myths

Despite the passing of time, there are still some myths, both positive and neg-

ative, associated with free software that can influence its assessment to differ-

ent degrees.

These myths have no solid foundation on which to base a coherent and sus-

tainable quality management, so we need to identify and evaluate each one

individually.

GNUFDL • PID_00145047 21 Developing free software in companies

We will then discuss some common myths associated with the quality of free

software.

• The fact that the source code is public does not guarantee that it is secure

and/or of good quality, as this depends on the community interest and

reviews.

• Feature freezing does not increase the stability of the application in itself,

because the important thing is to write good code from the start.

• The best way to understand a project is not to correct its possible short-

comings, as the documentation is significantly better for this purpose.

• Generally, users do not have the latest version of the repository with up-

dated bug-fixing.

Broadly speaking, the testing and review processes, and the public discussions

and hacker culture specific to the user community must be complemented by

the active planning and management of production quality.

This management should seek to fill any gaps in one or more aspects of the

product, e.g. production planning, development of the features or the docu-

mentation of the application.

Additional�quality�considerations

In general, both the release of the source code and the incorporation of error

handling systems and the sharing of responsibility for the product among all

those involved are key aspects of quality management.

Hence, it is also important for the overall quality of the project to consider

transparency in all actions, trust the development team, review and test all

parts of the source code and promote both the peer-to-peer philosophy and

the importance of doing things well from the start.

2.4. Legality and contributions

In a project based on free software with participation from the user commu-

nity, the legal management of the contributions of each member involved is

particularly important.

GNUFDL • PID_00145047 22 Developing free software in companies

This management is crucial both for the project founders and for the

members of the community, as it establishes the features of the author-

ship and ownership of the rights to the resulting code. Its relevance is

also strongly influenced by the implications that the combination of

codes from different authors could have on a single product.

To develop these concepts, we will refer to section 2.4 "Authors and holders

of rights" of the teaching materials for the subject Legal aspects and the features

of exploitation of free software.

The�author

The author of a work is the natural or legal entity that creates the work,

so authorship of the original creation is irrevocably assigned to this per-

son.

With works by several individuals, there are a number of possible situations:

• A collaborative work is the unit result of a composition of different parts

that can be exploited independently.

• A collective work is the collection of diverse contributions that cannot be

exploited independently.

• With a commissioned work (or one with financial compensation), author-

ship lies with the person or entity that carries out the commission.

In free software, authorship depends largely on the above considerations, tak-

ing into account that the transfer of ownership can sometimes be useful and

practical.

Moreover, the conditions under which derivative works are created (pre-exist-

ing content) may vary materially because of both the author and the work

itself. In all events, free licences must specify the conditions of the derivation

and redistribution of the works.

The�original�owner�and�the�derivative�owner

The original owner of the work is always the author. However, some rights

over the work may be transferred to other individuals or entities.

Recommended website

M.�Bain�et�al.(2007). Aspec-
tos legales y de explotación
del software libre. Universitat
Oberta de Catalunya
(http://ocw.uoc.edu/infor-
matica-tecnologia-i-multi-
media/aspectes-legals-i-dex-
plotacio/materials/).

GNUFDL • PID_00145047 23 Developing free software in companies

In this case, the recipient of the transfer of part of the rights to a work becomes

the derivative holder thereof. Note that only the holder of a particular right

may licence that right.

Identifying�the�holder

In order to exercise the above rights, we must be able to identify the author

of each work. This can be difficult in free software because the contributors to

the project may be many and varied.

To solve these problems, projects based on free software keep lists of the au-

thors who have contributed to them. Sometimes, these projects may require

the transfer of all or part of the rights before the contribution can be accepted.

GNUFDL • PID_00145047 24 Developing free software in companies

3. Case study

In the previous sections, we have examined both free software projects and

the management of user communities. Both sections describe the key aspects

of free software production from the point of view of project management.

To complete the module, this section will go into further detail on many of

the ideas and proposals described above before moving on to study a specific

case of a company based on free software.

The following sections are intended to serve as a guide for identifying and

clarifying how a company based on free software production implements its

particular methodology, formalises and manages its relationship with the user

community and addresses the many decisions that need to be taken as time

goes on.

In this section, we will study the case of Openbravo, S.L.

3.1. The company

Openbravo, S.L. is a company that develops professional solutions based on

free software for business.

Business�model

The business model exploited by the company is that of providing services

for the products it develops. As we explained in other modules, its business

strategy is based on associationism and coopetition between companies in

order to exploit the same business opportunity.

Business�strategy

The business model is implemented by partners that provide services to end

customers (such as customisation and support). In a sense, this particular hi-

erarchy between producer, distributor (or partner) and client establishes an

atmosphere of cooperativism with common goals.

To complete the strategy, the company publishes a manifesto as a sort of state-

ment of intent, which combines aspects of free software (for example, trans-

parency, openness and collaboration) with the company's third-party com-

mitments (such as free access or contribution management).

Note

The information in this section
has been taken mainly from
the corporate website (http://
www.openbravo.com/).

GNUFDL • PID_00145047 25 Developing free software in companies

Management and leadership The company's management combines tasks that

are internal and external to the organisation, both in its management team

and its Board of Directors, which is the result of foreign investment injected

into the company combined with its particular methodology based on free

software.

3.2. Products

Openbravo produces two free software solutions that can work independent-

ly of each other or in combination. Both products are distributed under free

licences and can be downloaded directly from the Internet.

The products offered by Openbravo are:

• Openbravo�ERP

Openbravo ERP is an enterprise resource planning system in a web envi-

ronment that integrates various management functions, such as supply,

warehousing, production and accounting, in a modular way.

The product is licensed under MPL 1.1 and can operate in different envi-

ronments and database systems and be integrated with Openbravo POS.

One of the highlights of the vast amount of information provided on the

product is the roadmap of the project development.

Recommended website

Mozilla Public License 1.1
(http://www.mozilla.org/
MPL/MPL-1.1.html).

Main features of
Openbravo ERP

http://sourceforge.net/
projects/openbravo/.

• Openbravo�POS

Openbravo POS is a point-of-sale terminal system that can be integrated

with Openbravo ERP.

The product is licensed under the GNU/GPL licence and can run in differ-

ent environments and with different database systems. It was especially

designed for touch-screen terminals.

The available product information includes the roadmap of the project

development.

3.3. The user community

The community of free software users plays an important role in Openbravo's

business strategy. The following sections examine its main aspects.

Open�Source�Strategy

To identify Openbravo's Open Source strategy, we need to consider the specific

features of the product development methodology and the business structure

used to exploit them.

Recommended website

GNU General Public License
(http://www.gnu.org/licens-
es/gpl.html).

Main features of
Openbravo POS

http://sourceforge.net/
projects/openbravopos/.

GNUFDL • PID_00145047 26 Developing free software in companies

The kernel of both products is primarily developed internally within the com-

pany and public repositories and an active user community are maintained

around it. For the development of complements, customisations and exten-

sions to the original product, both the user community and partners play a

part.

Partners must be examined separately because they correspond to the ex-

ploitation of an opportunity by a different organisation.

Nonetheless, Openbravo uses an Open Source strategy that combines different

orientations:

• In its product development and review, the strategy used is similar to Open

Monarchy, mainly due to the internal development of the product kernel,

the public repositories of source code, the company's final acceptance of

changes to the kernel and the planning of product development (for ex-

ample, the established roadmaps).

• In the development of complements (documentation, etc.), the strategy

is more similar to Consensus-based Development, due mainly to its develop-

ment within the user community.

• And lastly, the strategy for the development of extensions and customisa-

tions depends on the developer who implements them. If they are projects

carried out within the community (using the resources offered by Open-

bravo), they are possibly more similar to the Consensus-based development

model, while if they are developed by partners, they will depend both on

the strategy in question and the features of the development.

Partner strategy

If the partner develops extensions of the original product, the Open Source strategy will
depend as much on its business philosophy as on the features of the product (for exam-
ple, the MPL is more flexible with proprietary modules than the GPL).

Community�structure

The Openbravo ERP user community is defined and structured as a merito-

cratic system: there are several levels of collaboration and each is defined by

the knowledge required for this level, the amount of contributions made, re-

sponsibilities and privileges.

For Openbravo ERP, there are three different collaboration profiles (develop-

ers, functional experts and testers), while in the case of Openbravo POSITION,

there are only developers. The members of the user community organise them-

selves and are distributed into active projects in the community.

Resources�available�to�the�community

GNUFDL • PID_00145047 27 Developing free software in companies

Openbravo offers a range of resources (some in more than one language) for

the community and for its partners or general users. These include:

• Corporate website

• Partners area

• wiki project

• Portal for the Openbravo user community

• Employee blogs

• Forge for products (Openbravo ERP and Openbravo POS)

• Bug tracker

• University

• Mailing lists

• Openbravo code repository

• Openbravo news service

The user community can refer generally to a specific guide in the wiki explain-

ing how to collaborate with the project. It also has an exhaustive list of com-

munication channels that it can access. The roadmaps of each product com-

plete the resource guide for the user community.

3.4. Positioning and evolution

The company was founded as Tecnicia in 2001. In 2006, it obtained funding

in excess of six million dollars, when it was renamed Openbravo. That same

year, it released the source code of the products it develops under free licenses.

In May 2008, the funding round amounted to over twelve million dollars,

with investors including Sodena, GIMV, Adara and Amadeus Capital Partners.

Over the years, Openbravo has won several business and free software awards

and received grants from the Spanish Ministry of Industry, Tourism and Trade's

PROFIT programme to promote technical research.

Recommended website

All of the resources men-
tioned can be accessed from
the company website (http://
www.openbravo.com/).

GNUFDL • PID_00145047 28 Developing free software in companies

Both the company and the user community display a positive trend in devel-

opment, given that the project is currently one of the twenty-five most active

on SourceForge with more than one million cumulative downloads in early

2009.

Recommended website

For the most active projects
on SourceForge:
http://sourceforge.net/top/
mostactive.php?type=week.

GNUFDL • PID_00145047 29 Developing free software in companies

Summary

In this module, we have described the main features of the creation, manage-

ment and maintenance of free software development projects, taking into ac-

count the participation of the user community.

In a sense, the foundations of free software production do not differ that much

from the methodologies of traditional software development. However, the

features of open code and the presence of the user community shape its oper-

ation, making it unique in many respects.

With regard to the project per se, we must stress the importance of identifying,

defining and structuring both the functional aspects of the project (infrastruc-

ture, version management and coordination measures) and those concerning

free software (credibility, transparency or typologies of participation).

In addition to these aspects, there are factors associated with the free soft-

ware community, such as the company's strategy for community management

(Open Source strategy), the product life cycle and methodology, quality man-

agement and the legal aspects of user contributions.

Lastly, we described a case study that is representative of many of the aspects

we have seen in the different sections.

GNUFDL • PID_00145047 31 Developing free software in companies

Bibliography

Bain, M. et al.(2007). Aspectes legals i d'explotació del programari lliure. Universitat Ober-
ta de Catalunya <http://ocw.uoc.edu/informatica-tecnologia-i-multimedia/aspectes-legals-i-
dexplotacio/Course_listing> [Consulted in February 2009].

Collins-Sussman, B.; Fitzpatrick B.(2007). What's in it for me? How your compa-
ny can benefit from open sourcing code. OSCON: 27 July 2007 <http://www.youtube.com/
watch?v=ZtYJoatnHb8> and slides <http://www.red-bean.com/fitz/presentations/2007-07-
27-OSCON-whats-in-it-for-me.pdf> [Consulted in February 2009].

Crowston, K.; Howison, J.(May 2006). Assessing the Health of a FLOSS
Community. IT Systems Perspectives (pp. 113-115). <http://floss.syr.edu/publica-
tions/Crowston2006Assessing_the_health_of_open_source_communities.pdf> [Consulted
in February 2009].

Fogel, K.(2005). Producing Open Source Software: How to Run a Successful Free Software Project.
<http://producingoss.com> [Consulted in February 2009].

Mako, B. (2001). Free Software Project Management HOW TO. <http://mako.cc/projects/how-
to> [Consulted in February 2009].

Mohindra, D. (2008). Managing Quality in Open Source Software. <http://www1.webng.com/
dhruv/material/managing_quality_in_oo.pdf> [Consulted in February 2009].

Openbravo <http://www.openbravo.com/> [Consulted in February 2009].

Raymond, E. (1997). The cathedral and the bazaar <http://www.catb.org/~esr/writings/
cathedral-bazaar/> [Consulted in February 2009].

Tawileh, A. et al.(August 2006). Managing Quality in the Free and Open Source Software
Community (pp. 4-6). Proceedings of the Twelfth Americas Conference on Information
Systems. Mexico: Acapulco. <http://www.tawileh.net/anas//files/downloads/papers/FOSS-
QA.pdf?download> [Consulted in February 2009].

Strategies of free
software as a
business

Amadeu Albós Raya

PID_00145046

GNUFDL • PID_00145046 Strategies of free software as a business

© 2009, FUOC. Se garantiza permiso para copiar, distribuir y modificar este documento según los términos de la GNU Free
Documentation License, Version 1.2 o cualquiera posterior publicada por la Free Software Foundation, sin secciones invariantes ni
textos de cubierta delantera o trasera. Se dispone de una copia de la licencia en el apartado "GNU Free Documentation License" de
este documento.

GNUFDL • PID_00145046 Strategies of free software as a business

Index

Introduction... 5

Objectives... 6

1. The competitiveness of free software.. 7

2. The customer perspective.. 10

2.1. Advantages .. 10

2.2. Disadvantages .. 11

3. Business strategy.. 13

3.1. The free software model ... 13

3.2. Free software production .. 15

3.3. Provision of services related to free software 16

3.4. Ancillary markets .. 17

Summary.. 18

Bibliography... 19

GNUFDL • PID_00145046 5 Strategies of free software as a business

Introduction

In the free software business, as with generally any technology-based business,

a myriad of factors come into play that can influence the success of the project

to varying degrees. Many of these factors, such as the characteristics of the

software market, business models or the special features of free software pro-

duction, are addressed in the other modules.

The series of actions allowing us to establish a business opportunity that is

valid and viable in practice must be finely tuned if we are to secure our aims. In

other words, it is essential to transfer the features of free software as a business

to the real target market in order to implement a specific and appropriate

business strategy that can exploit the advantages of free software and control

its disadvantages.

This strategy must reflect the reality of the environment and business context,

identifying and analysing the points of view of each player on the market, in

order to maximise the guarantees of success as much as possible.

In this module, we will describe the main features influencing the strategy

of businesses based on free software, characterising the different elements as

advantages or disadvantages for the business.

GNUFDL • PID_00145046 6 Strategies of free software as a business

Objectives

After completing this module, students should have achieved the following

aims:

1. To understand the importance of strategy in businesses based on free soft-

ware.

2. To identify and evaluate the advantages of exploiting free software as a

business.

3. To identify and evaluate the disadvantages associated with the free soft-

ware business.

4. To obtain a thorough knowledge of and relate the strategies for free soft-

ware business models.

GNUFDL • PID_00145046 7 Strategies of free software as a business

1. The competitiveness of free software

Nowadays, free software is a valid and viable alternative to proprietary

software. Features such as the modularity of its development and instal-

lation, a standard-based operation and the constant evolution of appli-

cations form an adequate basis for the competitiveness of free software.

Nonetheless, this competitiveness will not be sufficient for the free software

business if these and other features are not properly channelled. In other

words, to create a project that will be stable and reliable over time, we must

define a business strategy to unite and coordinate the advantages while man-

aging and controlling the disadvantages.

In this first section, we will look briefly at the main features that make free

software a competitive alternative to proprietary software.

Recommended website

M.�Boyer;�J.�Robert(2006). The economics of Free and Open Source Software: Contributions
to a Government Policy on Open Source Software(Ch. 3, "Advantages and disadvantages of
FOSS").

<http://www.cirano.qc.ca/pdf/publication/2006RP-03.pdf>

Cost

In general, applications based on free software are freely available at no charge

from the Internet. This distribution philosophy is the antipode of the propri-

etary model, where payment is usually required for limited use of the appli-

cation in binary format.

Consequently, cost is a significant competitive advantage for the adoption

of free software over proprietary alternatives, given that it can substantially

reduce the required investment for a technological implementation (whether

created from scratch or for a major system overhaul).

The reduction in costs can also be significant in the evolution or specialisation

of a particular application because while free software guarantees the possi-

bility of aligning the application with specific interests through free access

to the source code, the proprietary equivalent may require a completely new

development.

Development,�flexibility�and�modularity

GNUFDL • PID_00145046 8 Strategies of free software as a business

While the development of a technological solution based on free software

may sometimes differ only slightly from the proprietary equivalent, method-

ologies based on collaboration and co-evolution between company and user

community have the advantage of cooperations of scale.

These features offer a number of possibilities, ranging from the exploitation

of economies of scale and the creation of segmented markets to the flexibili-

ty and modularity that enhance both the interoperability and integration be-

tween applications and their extension and evolution. In short, these features

encourage the generation of specific business opportunities.

Technology�risk

Generally speaking, the risks associated with technology adoption affect free

and proprietary software equally, at least from a strictly technological point

of view.

As a result, in the case of specific applications or solutions, the risk bears more

relation to the specific capabilities and competencies of the latter than to the

technology or methodology used for their development.

Security,�reliability�and�life�cycle

Over time, the evolution of software development methodologies has led to

greater and better control of the quality of the software produced, particularly

in areas such as adaptation and bug-fixing.

In this case, the opening up of the process of free software development and

the collaboration of the user community in the latter affords substantial dif-

ferentiation from the proprietary model. In other words, it will be difficult for

a company that produces proprietary software to match the human and time

resources used in free software projects.

This unique feature of free software adds to the competitiveness and reliability

of solutions, both for companies and for their customers.

Support�and�documentation

Occasionally, applications based on free software can lack the packaging we

are usually offered by their equivalent proprietary software applications. From

a sales point of view, this situation is a source of business opportunities on

several levels, with the additional benefits that specialisation and customer

proximity can bring.

Change�management

GNUFDL • PID_00145046 9 Strategies of free software as a business

Free software encourages the restructuring of the values integrated in the tra-

ditional market: it provides independence, freedom, lower costs and invest-

ment efficiency, many of which have been mitigated in the traditional soft-

ware business.

It also allows companies to adjust the cost structure and establish coopetition

strategies with related or complementary providers. This situation is more ad-

vantageous, competitive and effective – and less risky – for its participants

than their proprietary consortium equivalents.

Restructuring of values

Free software provides inde-
pendence, freedom, lower
costs and efficiency of invest-
ments, many of which have
been mitigated in the tradi-
tional software business.

GNUFDL • PID_00145046 10 Strategies of free software as a business

2. The customer perspective

For customers of products and services based on free software, it is very

important to identify the advantages and disadvantages of the free soft-

ware model in comparison to proprietary formats, especially if the latter

takes place in the context of a consolidated traditional market.

From the point of view of software product customers, economic issues may

be more relevant to the final implementation of the technology than a tech-

nological differentiation in product architecture. These features need to be

taken into account in company strategies if we intend to exploit the market

successfully.

In the following sections, we will describe in detail the advantages and disad-

vantages of businesses based on free software from a customer point of view.

2.1. Advantages

The advantages of free software for customers constitute an important part of

the company's business opportunity because they affect its market position-

ing.

Economic�effects

Free software gives the customer independence from technology providers,

alternatives to proprietary products and services (or possibly other free solu-

tions), use of an increasing range of software linked to standards and their

subsequent complementarities, and interchangeable software situations (com-

moditisation).

Costs

The increased efficiency and effectiveness in the management of technology

costs can be very significant for end customers, whether individuals or com-

panies of any size.

Due to its more efficient and effective management, free software encourages

the introduction of changes in cost structure and the technology investments

of customers.

GNUFDL • PID_00145046 11 Strategies of free software as a business

Changes in costs

We can cut implementation costs by using free software distributed without charge or
by reducing the forced upgrading of equipment within very short periods. These savings
can then be used to finance services or long-term technology investments (such as lower
system maintenance costs).

In addition, free access to the source code encourages the specialisation and

extension of applications based on free software by the customer – or by a

specialist company.

Ethical�values

In some cases, the ethical values associated with the free software movement,

such as transparency, independence, equality and cooperation, may be appro-

priate to the aims and ends of the customer – or to the image it attempts to

portray.

2.2. Disadvantages

Despite the obvious benefits of free software for customers, it also has disad-

vantages that need to be controlled and mitigated by companies seeking to

exploit related business opportunities.

Economic�effects

Customers can be reluctant to embrace free software because of switching costs

or compatibility with the solutions that it uses. The evaluation of alternatives

can sometimes be biased by the search for short-term results or returns, the

technology myths associated with free software or the customer's historical

association with the software it uses.

Risk�management

Any technological implementation in an organisation will have a degree of

associated risk (even for private customers), broadly comparable in free and

proprietary software. For the customer, the possible nuances between the two

solutions may be unsurmountable in certain conditions, such as when the

customer has a history of one or more failed migration attempts.

The customer may sometimes be unwilling to take risks with new software that

could affect the regular operation of processes, technology and staff, doing

away with the need to adapt them to enhance the organisation's efficiency

after a relevant technology implementation. This can also be a further source

of operational problems if it is not carefully planned.

Cost�management

Recommended website

J. García; A. Romeo; C. Prieto
(2003). Análisis Financiero del
Software Libre (Ch. 7) <http:/
/www.lapastillaroja.net/
capitulos_liberados_pdf/
la_pastilla_roja_
capitulo_7.pdf>

GNUFDL • PID_00145046 12 Strategies of free software as a business

Some of the costs of an implementation may be common regardless of

whether free or proprietary software is used. Customers sometimes believe that

platform changes inevitably involve more costs due to training, support and

staff motivation, or due to the loss of company productivity, for example. It

can be difficult to counter these arguments, mainly because they are difficult

to measure and quantify economically.

GNUFDL • PID_00145046 13 Strategies of free software as a business

3. Business strategy

The vision of the customer and, by extension, the target market is essential for

defining a sound business strategy for the company. Nonetheless, the com-

pany must complete its strategy by taking into account the advantages and

disadvantages of the free software model and, more specifically, the particular

business model it exploits.

Companies that commercially exploit free software should be aware of

and realistic about the environment in which they operate. All the spe-

cial features of free software, customers and the business model exploit-

ed need to be identified and analysed before it can formalise a realistic

and appropriate strategy to secure its aims.

In this section, we will look initially at the advantages and disadvantages of

the free software model for business before analysing the strategies associated

with business models based on free software.

3.1. The free software model

As is the case with customers, the special features of the free software mod-

el influence both the definition of the business and the possibilities of estab-

lishing the company on the market and its long-term prospects of business

development.

Advantages

We will now deal with the main advantages for the provider or company that

exploits free software for profit.

• Positioning�and�differentiation

Companies that exploit free software can adopt a good position for positive

marketing and market publicity in the sense that the diffusion of free software

may promote the aims of consolidation, trust, sustainability and increased

popularity of the company.

• Market

In the traditional software market, it can be difficult to identify and exploit

new business opportunities because of the economic impact of traditional

business policies. Therefore, to reiterate what we have explained above, free

GNUFDL • PID_00145046 14 Strategies of free software as a business

software encourages the introduction of innovative (disruptive) technologies

that allow for a differential bias which can be harnessed for new business op-

portunities.

Thus, free software favours the penetration of new companies in the tradi-

tional market by disrupting the economic effects that immobilise the market

players.

• Development�and�distribution

The freedom, ease and low cost of the distribution of free software (usually by

free and direct download from the Internet), combined with the cooperation,

involvement and motivation of the user community in its development, en-

courage both the spread and adoption of applications. In other words, both

the development methodology and the special features of the distribution of

solutions promote the efficiency and effectiveness of the project.

• Costs�and�risks

The burden and structure of costs and risks of companies based on free soft-

ware may be more advantageous and competitive than models based on pro-

prietary software because of the distribution and decentralisation of some of

its processes among the different players involved.

• Commoditisation

The commoditisation of software is advantageous for all players because it

reduces the barriers to entry for new software producers and increases the

competitiveness of the sector, thereby allowing production of the same goods

more efficiently. Besides seeking specialisation and differentiation to exploit

business opportunities, it is also possible to do business in a completely com-

moditised market.

• Innovation�and�the�creation�of�value

Open and cooperative development and production methodologies result in

greater efficiency and effectiveness, both in the creative process of innovation

and in the creation and capture of value by the company. In other words,

by opening up its production processes, the company ceases to rely solely on

internal staff for innovation (which is limited by time and aims) and begins to

benefit from the ideas and insights of volunteers, users and customers (whose

flexibility and motivation fosters the emergence of interesting innovations).

This closes the feedback loop between the company and customers or users

(treated as co-developers), thus reducing project risk and maximising the guar-

antees of success.

Recommended reading

L.�Morgan;�P.
Finnegan(2008). Deciding
on open innovation: an explo-
ration of how firms create and
capture value with open source
software(Vol. 287, pp. 229-
246). IFIP 2008.

GNUFDL • PID_00145046 15 Strategies of free software as a business

Disadvantages

We will now discuss some of the problems that can arise in companies based

on free software.

• Economic�effects

Some of the economic effects that favour the introduction of a new company

on the market could also limit the quality and quantity of its operations.

• Results

One consequence of the above is that it can be difficult to make large profits (at

least to the degree that proprietary software corporations do today) or profits

that can be sustained over a long period of time.

• Commoditisation

The commoditisation of software can also have a negative effect on compa-

nies based on free software if they fail to adequately identify and plan the dif-

ferentiation of their products, services and even marketing policies. In other

words, a situation of interchangeable goods can affect the composition and

distribution of the market if the products do not provide substantial differen-

tiation over time.

Moreover, doing business on a commoditised market makes it impossible to

obtain large profit margins because it is relatively easy for customers to change

technology provider. So, a business must be truly better than or at least as

good as its competitors in the industry in order to hold on to its position, for

example by focusing on response times and ability to adapt.

• Mythology

Despite the passing of the years, there may still be some myths about free

software on certain markets that complicate its implementation and deploy-

ment. The difficulty in debunking these myths will depend on market charac-

teristics such as the degree of implementation of proprietary software or failed

attempts at migration to free software.

3.2. Free software production

In general, if the developed application is successful among potential cus-

tomers, we can obtain advantages in the attraction of improvements and com-

plements, the sympathy of the audience and community, and lower mainte-

nance costs due to the participation of the community.

Limitations

For example, customer captiv-
ity and economy of ideas pre-
vent companies from securing
a dominant position on the
market, as could occur on cer-
tain markets swamped by pro-
prietary solutions.

GNUFDL • PID_00145046 16 Strategies of free software as a business

By contrast, it can be difficult in free software development to recover the

initial investment, which can sometimes be quite substantial. While it is a

common problem in both free and proprietary software, it is more difficult to

sell copies of free software than other models.

Mixed�models

The duality of mixed models (usually a public and a commercial version)

favours the adoption and diffusion of the application but has some drawbacks

too, such as the limited involvement of the community in the business aims

or the need to maintain an interesting commercial product over time.

This latter aspect may generate other problems if the company's management

of the user community is inadequate. For example, the community may de-

velop the proprietary extensions to the commercial version by itself – and

publicly.

Software�and�services

For the provision of services associated with a free application, it is possible

to develop coopetition strategies to expand the target market, subsequently

segmenting through differentiation. If coopetition strategies cannot be estab-

lished, the model offers few barriers to entry for competitors which, given

their access to the source code, can equip themselves with the necessary in-

frastructure to compete as they would on traditional markets.

Moreover, obtaining a substantial income solely from related services can be

difficult in markets with a strong presence of innovators and technology en-

thusiasts.

3.3. Provision of services related to free software

The provision of services has some advantages over its proprietary software

equivalent, such as the absence of substantial licensing costs, product quality

and access to the source code. These features allow the efficient and effective

provision of services, resulting in significant added value for the customer.

Nonetheless, it can be difficult to hold on to customers in the long run due to

the ease of market entry and the difficulty of providers to differentiate their

services.

Small�and�medium�enterprises

The main business opportunities concern the lack of packaging and the dis-

tribution of applications based on free software (such as installation, support,

customisation or training), with the exploitation of specific niche markets.

GNUFDL • PID_00145046 17 Strategies of free software as a business

By contrast, custom developments on specific applications may encounter dif-

ficulties with integration and compatibility with later versions. The emergence

of competitors in the same industry can also be problematic because of the

limited scope for coopetition.

Large�companies

The participation of large companies in projects based on free software can

be relatively straightforward due to the existence of a prior infrastructure and

organisation. The use of free software also cuts costs and improves brand im-

age in areas such as reliability, strength, confidence, stability and professional

support.

Nonetheless, formalising a brand image is not easy in the short term. The

dominance of large proprietary software corporations on the market compli-

cates positioning, and the risk associated with big projects is also greater.

3.4. Ancillary markets

In general, the business models associated with ancillary markets can serve to

complement main strategies. However, they may be appropriate and viable as

a basic strategy in markets with little competition or with differentiation or

specialisation requirements.

Hardware

The ancillary market of hardware may prove valid for exploiting markets that

require a product specialisation, such as integrated services, high performance

or lower purchasing costs for customers, i.e. markets in which proprietary sys-

tems may have no interest and free software can constitute a significant dif-

ference for customers.

The main disadvantages relate to the ability to bear the costs of production

and development if the target market is limited or there is strong price com-

petition. The difficulty in recovering the initial investment may sometimes

make this market unsuitable for small and medium enterprises.

Other�markets

Ancillary markets such as the sale of books or merchandising may be compet-

itively equivalent to their proprietary software counterparts given the special

features of free software, such as complementarities with the original product

or the dissemination of ethical values.

GNUFDL • PID_00145046 18 Strategies of free software as a business

Summary

The free software model is a valid and viable alternative to proprietary soft-

ware, formalising competitive features in its implementation with very varied

aims, such as cost and flexibility.

These features are advantages and disadvantages for the main players in the

software market. Sometimes, aspects can be an advantage for some and a dis-

advantage for others, which highlights the need to formalise a realistic busi-

ness strategy that can guarantee aims efficiently and effectively.

To develop this strategy, companies based on free software should consider

the implications of the free software model both for the customer and for its

own operation:

• Free software allows customers to combat the economic effects of a tradi-

tional market and manage the cost of implementation better, at the cost

of assuming a degree of risk.

• For the company, it is a business opportunity based on differentiation and

the efficient management of costs and risks, at the cost of limiting its mar-

ket position and the results it could obtain.

Formalisation of its business strategy will allow the company to exploit more

and better free software advantages in the context of the company's activity,

while also managing and mitigating the disadvantages that may limit its guar-

antees of success.

GNUFDL • PID_00145046 19 Strategies of free software as a business

Bibliography

Boyer, M.; Robert, J.(2006). The economics of Free and Open Source Software: Contributions to
a Government Policy on Open Source Software. Centre Interuniversitaire de recherche en analyse
des organisations (CIRANO), 2006RP-03 <http://www.cirano.qc.ca/pdf/publication/2006RP-
03.pdf> [Consulted in March 2009].

García, J.; Romeo, A.; Prieto, C.(2003). Análisis Financiero del Software Libre. La Pastilla
Roja, Chapter 7.

<http://www.lapastillaroja.net/capitulos_liberados_pdf/la_pastilla_roja_capitulo_7.pdf>
[Consulted in March 2009]

Ghosh, R. A. UNU-MERIT, N. L.(2006). Economic impact of open source software on innovation
and the competitiveness of the Information and Communication Technologies sector in the EU

<http://ec.europa.eu/enterprise/ict/policy/doc/2006-11-20-flossimpact.pdf> [Consulted in
March 2009].

Iansiti, M.; Richards, G. L.(2006). The Business of Free Software: Enterprise Incentives, Invest-
ment, and Motivation in the Open Source Community.

<http://www.hbs.edu/research/pdf/07-028.pdf> [Consulted in March 2009].

Morgan, L.; Finnegan, P. (2008). "Deciding on open innovation: an exploration of how
firms create and capture value with open source software". In: G. León; A. Bernardos; J. Casar;
K. Kautz; J. de Gross (eds). "International Federation for Information Processing". Open IT-
Based Innovation: Moving Towards Cooperative IT Transfer and Knowledge Diffusion (Vol. 287,
pp. 229-246). Boston: Springer.

West, J.; Gallagher, S. (2006). "Patterns of Open Innovation in Open Source Software". In:
Henry Chesbrough; Wim Vanhaverbeke; Joel West (eds.). Open Innovation: Researching a New
Paradigm (pp. 82-106). Oxford: Oxford University Press.

<http://www.openinnovation.net/Book/NewParadigm/Chapters/index.html> [Consulted in
June 2008].

Wheeler, D.(2007). Why Open Source Software?

<http://www.dwheeler.com/oss_fs_why.html> [Consulted in March 2009]

Free software, a
new economic
model?

Amadeu Albós Raya

PID_00145045

GNUFDL • PID_00145045 Free software, a new economic model?

© 2009, FUOC. Se garantiza permiso para copiar, distribuir y modificar este documento según los términos de la GNU Free
Documentation License, Version 1.2 o cualquiera posterior publicada por la Free Software Foundation, sin secciones invariantes ni
textos de cubierta delantera o trasera. Se dispone de una copia de la licencia en el apartado "GNU Free Documentation License" de
este documento.

GNUFDL • PID_00145045 Free software, a new economic model?

Index

Introduction... 5

Objectives... 6

1. Basis of the model... 7

1.1. Social production .. 8

1.2. Networked economy and culture ... 9

2. Characteristics of the free software model................................ 12

2.1. Software development ... 12

2.2. The cooperative paradigm .. 14

3. Validity and feasibility of the free software model................. 17

Summary.. 20

Bibliography... 21

Appendix.. 22

GNUFDL • PID_00145045 5 Free software, a new economic model?

Introduction

This module will examine the paradigm of free software from the point of

view of an economic model. In other words, we will study the fit and viability

of free software as a model of economic operation that can be sustained in

the long term.

In the study of free software as an economic model, we are limited by the

relative youth of businesses based on free software. However, considering that

the economic rules of the market are generally the same, we will base our study

on the differentiation introduced by the free software business with respect

to traditional markets. This view will give us a realistic initial approach to the

qualities of free software as an economic model.

First of all, we will explore the foundations of the paradigm of free software

and, hence, its operation and possibilities. More specifically, we will describe

the conceptual features of the underlying operational philosophy of the mod-

el, such as its social production.

We will then explore the consequences of the model based on free software

from different points of view, taking into account its differences with tradi-

tional models of software production and business. The projection of these

concepts should give us a better understanding of how the free software model

could fit into the market in the near future.

Lastly, we will study how the free software model relates to the validity and

viability of companies based on it, explaining the importance of combining

strategy with opportunity.

GNUFDL • PID_00145045 6 Free software, a new economic model?

Objectives

After completing this module, students should have achieved the following

aims:

1. To be familiar with the economics of the model based on free software.

2. To understand the fundamentals and implications of the free software

model vis-à-vis the traditional model.

3. To understand the differentiation introduced by the free software model

and evaluate its suitability for the creation of value for the market.

4. To explore the validity and viability of the free software model and ex-

ploitable business models.

GNUFDL • PID_00145045 7 Free software, a new economic model?

1. Basis of the model

We are familiar with many of the technological features of free software that

are similar to those of proprietary software to varying degrees. In other words,

the fundamental differences – if any – between free and proprietary software

are not based on the internal and external aspects of the product.

Broadly speaking, the technology applied to a product (for example, the de-

sign, architecture or specific implementation) does not in itself create a sub-

stantial differentiation between free and proprietary models, at least from the

strict point of view of the finished product.

The differences between free software and other paradigms of software

production (especially proprietary) mainly concern the specific features

of the model of development, the user community and the differentia-

tion of the product's value added.

These differences do not lie in technological aspects unique to the develop-

ment of the application or software, but on the characteristics and implica-

tions underlying their production. In other words, free software sums up a

particular orientation to create value in products and services that differ from

the traditional point of view.

As explained in previous modules, the business models that exploit these dis-

tinctive features in a traditional market have been perfected in recent years.

In all events, the chief value lies not in the software itself but in the capital

acquired when it is adopted.

This capital formalises the foundations of free software. In other words, free

software is based on the social production and network culture that not only

allow but also promote its possibilities and effects.

The following sections will succinctly develop these two concepts. We will

first of all examine the main features of social production before moving on

to characterise network culture and its impact on the economics on which

free software is based.

GNUFDL • PID_00145045 8 Free software, a new economic model?

1.1. Social production

Advances in global communications and the democratisation of technology

in recent decades could have influenced what we now consider free software

in different ways.

That is, the ease of access to information and willingness to cooperate are not

unique features of free software; they form a basis for the development of valid

and viable alternatives in many fields.

While there are now many initiatives associated to varying degrees with social

production, in this model, business organisations discover a way to encourage

creation and attract value for their business models.

In The Wealth of Networks, Yochai Benkler explores this issue in detail. Below,

we will discuss some of the most relevant aspects characterising social produc-

tion.

Economics�of�information

Information is a public good with economic implications at different levels as

a result of the use of information technologies.

Innovation, as the creation of new information, may be adversely affected by

situations with restriction or control, and facilitated by openness and collab-

oration on the production of information, knowledge and culture.

An example of social
production

Wikipedia (http://
www.wikipedia.org/).

Recommended reading

L.�Morgan;�P.
Finnegan(2008). Deciding
on open innovation: an explo-
ration of how firms create and
capture value with open source
software(Vol. 287, pp. 229-
246). IFIP.

Recommended website

Y.�Benkler(2006). The Wealth
of Networks: How social pro-
duction transforms mar-
kets and freedom. (http://
www.benkler.org/Benkler
_Wealth_Of_Networks.pdf).

Hence, production or innovation in peer-to-peer networks or generates a spi-

ral of opportunities characterised by motivation and efficiency with techno-

logical support.

Development�and�distribution�of�information

The development and distribution of information can follow a variety of pat-

terns, depending on how freedom is distributed between producers and con-

sumers. In general, the more freedom given to producers, the less obtained

by consumers.

Distribution channels for information influence how the latter is shared. The

direction of the transfer and its aims also influence how information is shared.

In all events, licensing and patents can restrict the flow of information, while

the quantitative growth of the network need not fragment or restrict it.

Peer-to-peer networks

In this case, the term refers to
the operation of the commu-
nity, rather than the architec-
tural or technological basis of
communication.

GNUFDL • PID_00145045 9 Free software, a new economic model?

Implications�of�social�production

Benkler maintains that the way we see the operational structure of the world

around us is changing, especially in terms of how we all collaborate and in-

teract with the integration of ideas and knowledge to create new knowledge.

1.2. Networked economy and culture

The implications of social production have become apparent in many fields in

recent times, particularly in free software. The interaction of knowledge and

the refinement of ideas is now a good way to encourage and further develop

a concept.

This view of production as a collaboration to qualitatively achieve a

given aim contrasts with the more traditional view of the market of

ideas and knowledge, where the importance lies more with the final

adoption of the product than with consensus, fit or quality.

David Bollier's When Push Comes to Pull: The New Economy and Culture of Net-

working Technology explores how the evolution of information technology has

allowed a new point of view to emerge that contrasts with the centralisation

and hierarchy of the traditional model.

The following sections will now briefly examine the main economic and cul-

tural features of networked culture considered by Bollier.

The�push�and�pull�models

The push model is based on mass production, anticipating consumer demand

and dynamically managing time and the location of production resources.

The pull model is based on the openness and flexibility of the production plat-

forms used as resources. This model does not anticipate consumer demand,

but rather customises products according to demand using fast and dynamic

processes.

Value�creation�networks

In pull models, the sharing of information and best practices substantially

improves the corpus of knowledge of all members of the network.

This network promotes and integrates open business models based on the cre-

ation of value and product customisation or differentiation.

Recommended website

D.�Bollier(2006). When
Push Comes to Pull: The New
Economy and Culture of Net-
working Technology. (http:/
/www.aspeninstitute.org/
atf/cf/%7bDEB6F227-
659B-4EC8-8F84-
8DF23CA704F5%7d/
2005InfoTechText.pdf).

GNUFDL • PID_00145045 10 Free software, a new economic model?

Hence, pull model platforms formalise, improve and increase the flexibility

of innovation and evolution through the community, without incurring the

costs of a similar implementation in a push model.

Target�market

Push models are successful in areas where consumers are not very clear on

what they want and prefer to make their selection based on predefined ty-

pologies.

By contrast, in pull models, consumers want to form part of the production

and selection process, in the sense that they may not know exactly what they

want, but they are sure that they want to participate and form part of the

process.

Production

Push models tend to seek alternative forms of production that may be more

economically competitive (for example, lower production costs), while pull

models tend mainly to seek the best ways to add value to the production net-

work.

This special orientation of pull models favours the scalability of the produc-

tion network and the union of the best participants for production speciali-

sation.

Cooperation

Pull models favour the creation of relationships based on trust, the sharing of

knowledge and cooperation among members of the network, to everybody's

benefit.

This ethos is often transformed into a system of collective government for the

sustainable and fair management of shared resources.

In this sense, companies based on pull models should provide guarantees for

the recognition of network members, since the model is based on trust and

the creation of value.

Education

With push models, the activity of students is focused on the construction of

static knowledge as prior training for a subsequent hierarchical society.

GNUFDL • PID_00145045 11 Free software, a new economic model?

Pull models promote alternative forms of education in that information tech-

nologies allow students to enter a dynamic flow of activity with access to many

independent resources for creating their own corpus of knowledge (and shar-

ing it).

GNUFDL • PID_00145045 12 Free software, a new economic model?

2. Characteristics of the free software model

The foundations of free software formalise a structure in which cooperation

and the sharing of knowledge among members allow for the innovation, pro-

duction and evolution of global knowledge.

The creation of value is undoubtedly an important goal for all members of the

community (be they users, developers, etc.) and for the model itself. Hence,

the decentralisation, freedom and independence that are the mark of the com-

munity offer guarantees for the consolidation and cohesion of production and

social capital.

The free software model is based on differentiation in relation to the

values that govern the traditional market, both from the point of view

of software development and of appreciation of the value created.

While it is true that, from a traditional point of view, some of the features

of the free software model are also applicable to other paradigms of develop-

ment and value creation, the free software model introduces new features to

the perception and appreciation of the values associated with the traditional

market.

In this section of the module, we will determine the features of the free soft-

ware model by comparing them with those of a traditional model, with the

aim of assessing the real differentiation introduced by the model in daily prac-

tice.

First of all, we will discuss the model from the point of view of software de-

velopment, before moving on to analyse the implications of differentiation as

a paradigm based on social production.

2.1. Software development

The methodology of free software development is possibly one of the factors

popularly considered as a differentiation compared to other software develop-

ment paradigms, such as the proprietary model. But is this really the case?

GNUFDL • PID_00145045 13 Free software, a new economic model?

From the point of view of software production, there are points in

free software development that clearly overlap with other development

models, such as proprietary, since the production methodologies have

a certain independence from specific implementations.

However, the fact that software production may be more or less consistent

with other models or that some of the requirements for code freedom are

more or less necessary in practice, this does not mean that there cannot be

significant differences in other aspects leading us to evaluate the whole as

innovative.

Fuggetta's article Software libre y de código abierto: ¿un nuevo modelo para el de-

sarrollo de software? explores these and other aspects of the differences between

the development model of free software and the development model of pro-

prietary software. The following sections will briefly outline some of its find-

ings.

Context

The success of free software can be attributed to a range of technological and

economic aspects affecting its innovation and production.

Its decentralisation, cooperation and freedom of use and exploitation have

made free software the standard-bearer of a new philosophy for addressing

and solving a variety of problems.

According to Fuggetta, many beliefs on free software can also be applied to

proprietary software, so it is a good idea to explore the topic thoroughly.

The�development�process

From a technological standpoint, the development of free software is not a

new paradigm, since most projects have a limited number of collaborators.

Moreover, incremental and evolutionary development methodologies are not

unique to free software.

Nonetheless, free software has managed to motivate both developers and users

to get involved in the project, sharing and associating the development and

evolution of the software with the needs of the community.

Defence�of�customer�rights

Problems related to customer protection arise mainly in reference to software

packages, since the customer already owns the code in custom developments.

Recommended website

A.�Fuggetta(2004). Soft-
ware libre y de código abier-
to: ¿un nuevo modelo para
el desarrollo de software?
(http://alarcos.inf-cr.uclm.es/
doc/ig1/doc/temas/4/IG1-
t4slibreabierto.pdf)

GNUFDL • PID_00145045 14 Free software, a new economic model?

For software packages, it may be enough to be able to access the source code

without subsequently modifying or redistributing it. The company's user sup-

port should also abide by rules that facilitate the handing over of the code in

the event that the company cannot maintain it.

Dissemination�of�knowledge

The spread of knowledge through access to the source code is insufficient,

since the subjects on software engineering reveal that documents describing

the software architecture are also needed.

Moreover, in the event that this knowledge could be disseminated, it would

only be necessary to publish its source code (without the right to copy and

redistribute the software).

Cost

The fact that the software is released under a free license does not mean it

cannot be commercialised or that its development does not have an associated

cost (although we do not know the extent of this).

In addition, just because we cannot quantify or centralise its cost, this does

not mean that it is not distributed among the collaborators, even indirectly

by companies with little or nothing in common with the world of software.

Effectiveness�of�the�business�model

The main business models that actually exploit free software engage in the

development and distribution of pure open source packages or free and pro-

prietary software platforms. Other forms of business can be set up to a greater

or lesser extent with both free and proprietary software.

Moreover, there is currently no evidence to suggest that a company based

solely on services will be profitable over time.

The�software�industry

Europe does not have an industrial strategy to unify the actions of the various

companies involved. Hence, offering support to free software is not a strategy

in comparison to the creation of innovative products.

2.2. The cooperative paradigm

While some of the features of the free software model are not innovative from

a classical perspective, as we saw above, those that motivate a change in mar-

ket perspective are.

On profitability

In The Business of Software,
Michael Cusumano argues
that software companies will
increasingly depend on the
combination of revenue from
licences and services.

GNUFDL • PID_00145045 15 Free software, a new economic model?

To analyse in detail the differentiation introduced by the free software

model compared to other traditional models, we will need to assess the

aspects of production and the creation of value and knowledge under-

pinning the model.

In his article Open Source Paradigm Shift, Tim O'Reilly identifies these and other

features of free software that are differentiating and which create a competi-

tive advantage that can be exploited for profit. The following paragraphs will

briefly outline some of his findings.

Change

Free software has deeply transformed the structure of the benchmark market,

often with implications extending beyond those imagined by its creators.

These changes are based on product quality, lower production costs and the

use of standards, in addition to differentiation in marketing, distribution and

logistics.

Software�as�a�commodity

In a context of permanent standardised communications such as the current

one, all communication applications are interchangeable (a web browser, for

example). In other words, the use of standards means that software can be

considered a commodity.

Hence, when the revenue-generating potential of an application is diminished

because of the commoditisation process, a new market will emerge for propri-

etary products, especially if they exploit the global communications network.

Moreover, free software remains a viable model for companies providing ser-

vices, although we cannot expect similar profit margins to those of the mod-

ern software giants.

Network�collaboration

The culture of software sharing has grown since its origins at the same pace

as the Internet, whose participatory architecture is present in virtually all of

its functionalities.

Recommended website

T.�O'Reilly(2004). Open
Source Paradigm Shift.

(http://www.oreillynet.com/
pub/a/oreilly/tim/articles/
paradigmshift_0504.html).

GNUFDL • PID_00145045 16 Free software, a new economic model?

Free software is the natural language of the networked community, resulting

in a style of collaboration and participation unique to its members. This col-

laboration is critical to the success and differentiation of leading Internet ap-

plications, since it has highlighted the importance of treating users as co-de-

velopers of the software.

Customisation�and�software�as�a�service

Nowadays, we are used to considering applications as artefacts rather than

static processes. Programs require engineering for their creation but the dy-

namic languages that allow for the cohesion of components (such as data

management scripts) offer the perspective of a dynamic and evolving process

of the application.

Many of the services offered on-line (such as search engines) require constant

revisions and updates in order to perform their functions properly. This gen-

erates a new business paradigm for computers and information technology in

general, and for the exploitation of software as a service in particular.

The�Internet�operating�system

We can consider the Internet as a single virtual computer that builds an oper-

ating system from the connection of several small pieces and allows anybody

to participate in the creation of value.

The values of the free software user community are important to the paradigm

as they promote the spirit of seeking out and sharing knowledge.

The commoditising of technology is part of the process that allows the indus-

try to move forward to create more value for everybody. For industry, it is es-

sential to strike a balance that will create more value than that obtained with

individual participants.

GNUFDL • PID_00145045 17 Free software, a new economic model?

3. Validity and feasibility of the free software model

In previous sections, we looked at the foundations of the free software model

and the features that distinguish it from the more traditional models.

To evaluate the long-term sustainability of the free software model, we need

much more data than we currently possess, i.e. a much wider time slot for a

more precise comparison with traditional models.

Time will tell whether free software is a new economic model and what

features and conditions will allow it to be so.

We will now offer some conclusions. Although, at the time of writing, busi-

ness based on free software is still relatively new, we have highlighted the dif-

ferences allowing the adoption of a new business perspective based primarily

on promoting the cooperative production of knowledge.

Applications�based�on�free�software

The social production of a specific application or solution encourages the cre-

ation of value above and beyond its cost of production, affording it a compet-

itive advantage over other market alternatives.

Free software-based applications, together with open standards, can offset

some of the economic effects that strengthen products based on the tradition-

al model. Thus, besides inducing a substantial differentiation with tradition-

al applications, they allow for strategies and policies of coopetition between

companies in a win-win paradigm.

The�market

Social production has plagued the Internet with alternative initiatives to tra-

ditional models. Over time, social capital has become a significant value for

innovation and development in open environments. We now have profitable

business models that pay for the production of knowledge.

The business of knowledge

Innocentive (http://www.innocentive.com/) is just one website that rewards ideas that
solve specific problems. On it, there are users who pose questions (seekers) and others
that solve them (solvers) in exchange for a financial reward.

GNUFDL • PID_00145045 18 Free software, a new economic model?

This and other examples have led to the creation of a new market logic, re-

ferred to in some contexts as Wikinomics and crowdsourcing. This logic is

based on the pull model we saw above, i.e. the attraction of ideas and effort

in contrast to the traditional push model.

In time, we will discover whether this market perspective allows the patterns

of technology adoption typical of the traditional market to evolve towards a

new situation.

The�business

The new market perspective can offer new business opportunities associat-

ed with the exploitation of ideas, concepts and knowledge for profit without

owning the latter. In other words, the value of an application based on free

software does not lie in the solution itself but in the capital acquired and gen-

erated with it.

Nonetheless, the validity and viability of free software as a model also depends

on the particular design features of the company that exploits it. That is, it

is essential to design the company around a solid and lasting business oppor-

tunity.

Risks

Undoubtedly, the main risks for the model based on free software are obtain-

ing a critical mass of users to ensure the project's viability and laying the foun-

dations for a business model that will prove stable over time. We must also

take into account the relationship between the initial investment and the ex-

pected benefits.

Business�viability�study

Comprehensively analysing, designing and formalising the company will in-

crease the guarantees of success of our free software-based business. To max-

imise these guarantees, the company's viability must be studied prior to its

launch and formalised in a business plan.

Companies based on free software must complement the above aspects with

the features of business models based on free software seen in the fourth mod-

ule, creating a combination to formalise a sound basis on which to set up a

sustainable business .

The�free�software�company

See also

In the third module of this
subject, we took an initial ap-
proach to the main features af-
fecting the business viability of
the traditional software busi-
ness, namely aspects of sales
and marketing, along with the
products and services covered
by the business.

GNUFDL • PID_00145045 19 Free software, a new economic model?

As with any business model, a company based on free software will also require

detailed planning and design prior to start-up. In the previous sections, we

emphasised the importance of carefully analysing the business fundamentals

of the company as a condition for evaluating its validity and feasibility.

Both the basic features of free software and the implications that we have

described throughout this module can exert different influences depending on

the typology of the business opportunity and the context we seek to exploit.

Thus, the strategy of a company based on free software can and should char-

acterise its actions in the differentiation of its business and the economic ef-

fects of its environment, as well as in social capital and production, in addi-

tion to coopetition.

GNUFDL • PID_00145045 20 Free software, a new economic model?

Summary

Throughout this module, we have explored the features of free software as an

economic model, even considering the constraints of data limitations given

the fact that business models based on free software are relatively new.

Firstly, the basics of social capital and the collective production of knowledge

and ideas are not unique to free software. There are currently several initia-

tives demonstrating how cooperation and collaboration can be feasible in the

innovation and production of knowledge.

These basics reveal the importance of the network of collaborators and their

involvement and motivation in the global and individual progress of the

members of the community. They also offer a viable alternative to traditional

production models.

The implications of the philosophy of social production can also be explored

from different points of view. While certain features of free software do not

reveal major differences with other models, there are some features that can

lead to important distinctions.

In the free software business, it is essential to strengthen and exploit the dis-

tinguishing fundamentals of free software in order to provide valid and viable

alternatives to traditional models. These actions must inevitably be comple-

mented by the detailed study and planning of the business opportunity to

ensure the viability and future of the free software company.

GNUFDL • PID_00145045 21 Free software, a new economic model?

Bibliography

Benkler, Y.(2006). The wealth of networks: How social production reforms mar-
kets and freedom. New Haven: Yale University Press. <http://www.benkler.org/
Benkler_Wealth_Of_Networks.pdf; WIKI:http://cyber.law.harvard.edu/wealth_of_networks/
Main_Page> [Consulted in March 2009]

Bollier, D.(2006). When Push Comes to Pull: The New Economy and Culture of Net-
working Technology. <http://www.aspeninstitute.org/atf/cf/%7bDEB6F227-659B-4EC8-8F84-
8DF23CA704F5%7d/2005InfoTechText.pdf>

Fogel, K.(2004). The Promise of the Post-Copyright World<http://www.questioncopyright.org/
promise> [Consulted in March 2009]

Fuggetta, A.(Sept – Oct 2004): Open Source and Free Software: A New Model for the Software
Development Process? (No. 171). Novática – Upgrade: Monografía del proceso de software,
English <http://www.upgrade-cepis.org/issues/2004/5/up5-5Fuggetta.pdf) | Spanish: (http://
alarcos.inf-cr.uclm.es/doc/ig1/doc/temas/4/IG1-t4slibreabierto.pdf> [Consulted in February
2009]

Goldhaber, M.(June 2006). The Value of Openness in an Attention Economy(Vol.
11, no. 6). <http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1334/
1254> [Consulted in March 2009]

Moglen, E.(1999). Anarchism Triumphant and the Death of Copyright. <http://www.uic.edu/
htbin/cgiwrap/bin/ojs/index.php/fm/article/view/684/594> [Consulted in March 2009]

Morgan, L.; Finnegan, P. (2008). Deciding on open innovation: an exploration of how firms
create and capture value with open source software. In: G. León; A. Bernardos; J. Casar; K. Kautz;
J. DeGross (ed.). International Federation for Information Processing. Open IT-Based Inno-
vation: Moving Towards Cooperative IT Transfer and Knowledge Diffusion (Vol. 287, pp.
229-246). Boston: Springer.

O'Reilly, T.(2004). Open Source Paradigm Shift.<http://tim.oreilly.com/articles/
paradigmshift_0504.html> [Consulted in February 2009]

GNUFDL • PID_00145045 22 Free software, a new economic model?

Appendix

GNU�GENERAL�PUBLIC�LICENSE

Version 3, 29 June 2007

Copyright © 2007 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and

other kinds of works.

The licenses for most software and other practical works are designed to take

away your freedom to share and change the works. By contrast, the GNU Gen-

eral Public License is intended to guarantee your freedom to share and change

all versions of a program--to make sure it remains free software for all its users.

We, the Free Software Foundation, use the GNU General Public License for

most of our software; it applies also to any other work released this way by its

authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our

General Public Licenses are designed to make sure that you have the freedom

to distribute copies of free software (and charge for them if you wish), that

you receive source code or can get it if you want it, that you can change the

software or use pieces of it in new free programs, and that you know you can

do these things.

To protect your rights, we need to prevent others from denying you these

rights or asking you to surrender the rights. Therefore, you have certain re-

sponsibilities if you distribute copies of the software, or if you modify it: re-

sponsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for

a fee, you must pass on to the recipients the same freedoms that you received.

You must make sure that they, too, receive or can get the source code. And

you must show them these terms so they know their rights.

GNUFDL • PID_00145045 23 Free software, a new economic model?

Developers that use the GNU GPL protect your rights with two steps: (1) as-

sert copyright on the software, and (2) offer you this License giving you legal

permission to copy, distribute and/or modify it.

For the developers' and authors' protection, the GPL clearly explains that there

is no warranty for this free software. For both users' and authors' sake, the GPL

requires that modified versions be marked as changed, so that their problems

will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified ver-

sions of the software inside them, although the manufacturer can do so. This

is fundamentally incompatible with the aim of protecting users' freedom to

change the software. The systematic pattern of such abuse occurs in the area

of products for individuals to use, which is precisely where it is most unac-

ceptable. Therefore, we have designed this version of the GPL to prohibit the

practice for those products. If such problems arise substantially in other do-

mains, we stand ready to extend this provision to those domains in future

versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States

should not allow patents to restrict development and use of software on gen-

eral-purpose computers, but in those that do, we wish to avoid the special

danger that patents applied to a free program could make it effectively propri-

etary. To prevent this, the GPL assures that patents cannot be used to render

the program non-free.

The precise terms and conditions for copying, distribution and modification

follow.

TERMS�AND�CONDITIONS

0.�Definitions.

"This License" refers to version 3 of the GNU General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of works,

such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this License.

Each licensee is addressed as "you". "Licensees" and "recipients" may be indi-

viduals or organizations.

To "modify" a work means to copy from or adapt all or part of the work in

a fashion requiring copyright permission, other than the making of an exact

copy. The resulting work is called a "modified version" of the earlier work or

a work "based on" the earlier work.

GNUFDL • PID_00145045 24 Free software, a new economic model?

A "covered work" means either the unmodified Program or a work based on

the Program.

To "propagate" a work means to do anything with it that, without permission,

would make you directly or secondarily liable for infringement under appli-

cable copyright law, except executing it on a computer or modifying a private

copy. Propagation includes copying, distribution (with or without modifica-

tion), making available to the public, and in some countries other activities

as well.

To "convey" a work means any kind of propagation that enables other parties

to make or receive copies. Mere interaction with a user through a computer

network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices" to the extent

that it includes a convenient and prominently visible feature that (1) displays

an appropriate copyright notice, and (2) tells the user that there is no warranty

for the work (except to the extent that warranties are provided), that licensees

may convey the work under this License, and how to view a copy of this Li-

cense. If the interface presents a list of user commands or options, such as a

menu, a prominent item in the list meets this criterion.

1.�Source�Code.

The "source code" for a work means the preferred form of the work for making

modifications to it. "Object code" means any non-source form of a work.

A "Standard Interface" means an interface that either is an official standard

defined by a recognized standards body, or, in the case of interfaces specified

for a particular programming language, one that is widely used among devel-

opers working in that language.

The "System Libraries" of an executable work include anything, other than

the work as a whole, that (a) is included in the normal form of packaging

a Major Component, but which is not part of that Major Component, and

(b) serves only to enable use of the work with that Major Component, or to

implement a Standard Interface for which an implementation is available to

the public in source code form. A "Major Component", in this context, means a

major essential component (kernel, window system, and so on) of the specific

operating system (if any) on which the executable work runs, or a compiler

used to produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all the

source code needed to generate, install, and (for an executable work) run the

object code and to modify the work, including scripts to control those activi-

ties. However, it does not include the work's System Libraries, or general-pur-

pose tools or generally available free programs which are used unmodified in

GNUFDL • PID_00145045 25 Free software, a new economic model?

performing those activities but which are not part of the work. For example,

Corresponding Source includes interface definition files associated with source

files for the work, and the source code for shared libraries and dynamically

linked subprograms that the work is specifically designed to require, such as

by intimate data communication or control flow between those subprograms

and other parts of the work.

The Corresponding Source need not include anything that users can regener-

ate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2.�Basic�Permissions.

All rights granted under this License are granted for the term of copyright on

the Program, and are irrevocable provided the stated conditions are met. This

License explicitly affirms your unlimited permission to run the unmodified

Program. The output from running a covered work is covered by this License

only if the output, given its content, constitutes a covered work. This License

acknowledges your rights of fair use or other equivalent, as provided by copy-

right law.

You may make, run and propagate covered works that you do not convey,

without conditions so long as your license otherwise remains in force. You

may convey covered works to others for the sole purpose of having them make

modifications exclusively for you, or provide you with facilities for running

those works, provided that you comply with the terms of this License in con-

veying all material for which you do not control copyright. Those thus making

or running the covered works for you must do so exclusively on your behalf,

under your direction and control, on terms that prohibit them from making

any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the con-

ditions stated below. Sublicensing is not allowed; section 10 makes it unnec-

essary.

3.�Protecting�Users'�Legal�Rights�From�Anti-Circumvention�Law.

No covered work shall be deemed part of an effective technological measure

under any applicable law fulfilling obligations under article 11 of the WIPO

copyright treaty adopted on 20 December 1996, or similar laws prohibiting or

restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid cir-

cumvention of technological measures to the extent such circumvention is

effected by exercising rights under this License with respect to the covered

GNUFDL • PID_00145045 26 Free software, a new economic model?

work, and you disclaim any intention to limit operation or modification of

the work as a means of enforcing, against the work's users, your or third par-

ties' legal rights to forbid circumvention of technological measures.

4.�Conveying�Verbatim�Copies.

You may convey verbatim copies of the Program's source code as you receive it,

in any medium, provided that you conspicuously and appropriately publish

on each copy an appropriate copyright notice; keep intact all notices stating

that this License and any non-permissive terms added in accord with section

7 apply to the code; keep intact all notices of the absence of any warranty;

and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you

may offer support or warranty protection for a fee.

5.�Conveying�Modified�Source�Versions.

You may convey a work based on the Program, or the modifications to produce

it from the Program, in the form of source code under the terms of section 4,

provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and

giving a relevant date.

b) The work must carry prominent notices stating that it is released under this

License and any conditions added under section 7. This requirement modifies

the requirement in section 4 to "keep intact all notices".

c) You must license the entire work, as a whole, under this License to anyone

who comes into possession of a copy. This License will therefore apply, along

with any applicable section 7 additional terms, to the whole of the work, and

all its parts, regardless of how they are packaged. This License gives no per-

mission to license the work in any other way, but it does not invalidate such

permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate

Legal Notices; however, if the Program has interactive interfaces that do not

display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works,

which are not by their nature extensions of the covered work, and which are

not combined with it such as to form a larger program, in or on a volume of

a storage or distribution medium, is called an "aggregate" if the compilation

and its resulting copyright are not used to limit the access or legal rights of

GNUFDL • PID_00145045 27 Free software, a new economic model?

the compilation's users beyond what the individual works permit. Inclusion

of a covered work in an aggregate does not cause this License to apply to the

other parts of the aggregate.

6.�Conveying�Non-Source�Forms.

You may convey a covered work in object code form under the terms of sec-

tions 4 and 5, provided that you also convey the machine-readable Corre-

sponding Source under the terms of this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (includ-

ing a physical distribution medium), accompanied by the Corresponding

Source fixed on a durable physical medium customarily used for software in-

terchange.

b) Convey the object code in, or embodied in, a physical product (including

a physical distribution medium), accompanied by a written offer, valid for at

least three years and valid for as long as you offer spare parts or customer sup-

port for that product model, to give anyone who possesses the object code

either (1) a copy of the Corresponding Source for all the software in the prod-

uct that is covered by this License, on a durable physical medium customarily

used for software interchange, for a price no more than your reasonable cost

of physically performing this conveying of source, or (2) access to copy the

Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the written

offer to provide the Corresponding Source. This alternative is allowed only

occasionally and noncommercially, and only if you received the object code

with such an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or

for a charge), and offer equivalent access to the Corresponding Source in the

same way through the same place at no further charge. You need not require

recipients to copy the Corresponding Source along with the object code. If the

place to copy the object code is a network server, the Corresponding Source

may be on a different server (operated by you or a third party) that supports

equivalent copying facilities, provided you maintain clear directions next to

the object code saying where to find the Corresponding Source. Regardless of

what server hosts the Corresponding Source, you remain obligated to ensure

that it is available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you in-

form other peers where the object code and Corresponding Source of the work

are being offered to the general public at no charge under subsection 6d.

GNUFDL • PID_00145045 28 Free software, a new economic model?

A separable portion of the object code, whose source code is excluded from the

Corresponding Source as a System Library, need not be included in conveying

the object code work.

A "User Product" is either (1) a "consumer product", which means any tangible

personal property which is normally used for personal, family, or household

purposes, or (2) anything designed or sold for incorporation into a dwelling.

In determining whether a product is a consumer product, doubtful cases shall

be resolved in favor of coverage. For a particular product received by a partic-

ular user, "normally used" refers to a typical or common use of that class of

product, regardless of the status of the particular user or of the way in which

the particular user actually uses, or expects or is expected to use, the product.

A product is a consumer product regardless of whether the product has sub-

stantial commercial, industrial or non-consumer uses, unless such uses repre-

sent the only significant mode of use of the product.

"Installation Information" for a User Product means any methods, procedures,

authorization keys, or other information required to install and execute mod-

ified versions of a covered work in that User Product from a modified version

of its Corresponding Source. The information must suffice to ensure that the

continued functioning of the modified object code is in no case prevented or

interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically

for use in, a User Product, and the conveying occurs as part of a transaction in

which the right of possession and use of the User Product is transferred to the

recipient in perpetuity or for a fixed term (regardless of how the transaction is

characterized), the Corresponding Source conveyed under this section must be

accompanied by the Installation Information. But this requirement does not

apply if neither you nor any third party retains the ability to install modified

object code on the User Product (for example, the work has been installed in

ROM).

The requirement to provide Installation Information does not include a re-

quirement to continue to provide support service, warranty, or updates for

a work that has been modified or installed by the recipient, or for the User

Product in which it has been modified or installed. Access to a network may

be denied when the modification itself materially and adversely affects the

operation of the network or violates the rules and protocols for communica-

tion across the network.

Corresponding Source conveyed, and Installation Information provided, in

accord with this section must be in a format that is publicly documented (and

with an implementation available to the public in source code form), and

must require no special password or key for unpacking, reading or copying.

GNUFDL • PID_00145045 29 Free software, a new economic model?

7.�Additional�Terms.

"Additional permissions" are terms that supplement the terms of this License

by making exceptions from one or more of its conditions. Additional permis-

sions that are applicable to the entire Program shall be treated as though they

were included in this License, to the extent that they are valid under applica-

ble law. If additional permissions apply only to part of the Program, that part

may be used separately under those permissions, but the entire Program re-

mains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove

any additional permissions from that copy, or from any part of it. (Addition-

al permissions may be written to require their own removal in certain cases

when you modify the work.) You may place additional permissions on mate-

rial, added by you to a covered work, for which you have or can give appro-

priate copyright permission.

Notwithstanding any other provision of this License, for material you add

to a covered work, you may (if authorized by the copyright holders of that

material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sec-

tions 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or author at-

tributions in that material or in the Appropriate Legal Notices displayed by

works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring

that modified versions of such material be marked in reasonable ways as dif-

ferent from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of

the material; or

e) Declining to grant rights under trademark law for use of some trade names,

trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that material by any-

one who conveys the material (or modified versions of it) with contractual

assumptions of liability to the recipient, for any liability that these contractual

assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered "further restrictions"

within the meaning of section 10. If the Program as you received it, or any

part of it, contains a notice stating that it is governed by this License along

with a term that is a further restriction, you may remove that term. If a license

GNUFDL • PID_00145045 30 Free software, a new economic model?

document contains a further restriction but permits relicensing or conveying

under this License, you may add to a covered work material governed by the

terms of that license document, provided that the further restriction does not

survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place,

in the relevant source files, a statement of the additional terms that apply to

those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of

a separately written license, or stated as exceptions; the above requirements

apply either way.

8.�Termination.

You may not propagate or modify a covered work except as expressly provided

under this License. Any attempt otherwise to propagate or modify it is void,

and will automatically terminate your rights under this License (including any

patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from

a particular copyright holder is reinstated (a) provisionally, unless and until

the copyright holder explicitly and finally terminates your license, and (b)

permanently, if the copyright holder fails to notify you of the violation by

some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated perma-

nently if the copyright holder notifies you of the violation by some reason-

able means, this is the first time you have received notice of violation of this

License (for any work) from that copyright holder, and you cure the violation

prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses

of parties who have received copies or rights from you under this License. If

your rights have been terminated and not permanently reinstated, you do not

qualify to receive new licenses for the same material under section 10.

9.�Acceptance�Not�Required�for�Having�Copies.

You are not required to accept this License in order to receive or run a copy

of the Program. Ancillary propagation of a covered work occurring solely as a

consequence of using peer-to-peer transmission to receive a copy likewise does

not require acceptance. However, nothing other than this License grants you

permission to propagate or modify any covered work. These actions infringe

copyright if you do not accept this License. Therefore, by modifying or prop-

agating a covered work, you indicate your acceptance of this License to do so.

GNUFDL • PID_00145045 31 Free software, a new economic model?

10.�Automatic�Licensing�of�Downstream�Recipients.

Each time you convey a covered work, the recipient automatically receives a

license from the original licensors, to run, modify and propagate that work,

subject to this License. You are not responsible for enforcing compliance by

third parties with this License.

An "entity transaction" is a transaction transferring control of an organization,

or substantially all assets of one, or subdividing an organization, or merging

organizations. If propagation of a covered work results from an entity trans-

action, each party to that transaction who receives a copy of the work also

receives whatever licenses to the work the party's predecessor in interest had

or could give under the previous paragraph, plus a right to possession of the

Corresponding Source of the work from the predecessor in interest, if the pre-

decessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights grant-

ed or affirmed under this License. For example, you may not impose a license

fee, royalty, or other charge for exercise of rights granted under this License,

and you may not initiate litigation (including a cross-claim or counterclaim in

a lawsuit) alleging that any patent claim is infringed by making, using, selling,

offering for sale, or importing the Program or any portion of it.

11.�Patents.

A "contributor" is a copyright holder who authorizes use under this License of

the Program or a work on which the Program is based. The work thus licensed

is called the contributor's "contributor version".

A contributor's "essential patent claims" are all patent claims owned or con-

trolled by the contributor, whether already acquired or hereafter acquired,

that would be infringed by some manner, permitted by this License, of mak-

ing, using, or selling its contributor version, but do not include claims that

would be infringed only as a consequence of further modification of the con-

tributor version. For purposes of this definition, "control" includes the right

to grant patent sublicenses in a manner consistent with the requirements of

this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent

license under the contributor's essential patent claims, to make, use, sell, offer

for sale, import and otherwise run, modify and propagate the contents of its

contributor version.

GNUFDL • PID_00145045 32 Free software, a new economic model?

In the following three paragraphs, a "patent license" is any express agreement

or commitment, however denominated, not to enforce a patent (such as an

express permission to practice a patent or covenant not to sue for patent in-

fringement). To "grant" such a patent license to a party means to make such

an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the

Corresponding Source of the work is not available for anyone to copy, free of

charge and under the terms of this License, through a publicly available net-

work server or other readily accessible means, then you must either (1) cause

the Corresponding Source to be so available, or (2) arrange to deprive yourself

of the benefit of the patent license for this particular work, or (3) arrange, in a

manner consistent with the requirements of this License, to extend the patent

license to downstream recipients. "Knowingly relying" means you have actual

knowledge that, but for the patent license, your conveying the covered work

in a country, or your recipient's use of the covered work in a country, would

infringe one or more identifiable patents in that country that you have reason

to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you

convey, or propagate by procuring conveyance of, a covered work, and grant

a patent license to some of the parties receiving the covered work authorizing

them to use, propagate, modify or convey a specific copy of the covered work,

then the patent license you grant is automatically extended to all recipients

of the covered work and works based on it.

A patent license is "discriminatory" if it does not include within the scope of

its coverage, prohibits the exercise of, or is conditioned on the non-exercise

of one or more of the rights that are specifically granted under this License.

You may not convey a covered work if you are a party to an arrangement

with a third party that is in the business of distributing software, under which

you make payment to the third party based on the extent of your activity of

conveying the work, and under which the third party grants, to any of the

parties who would receive the covered work from you, a discriminatory patent

license (a) in connection with copies of the covered work conveyed by you (or

copies made from those copies), or (b) primarily for and in connection with

specific products or compilations that contain the covered work, unless you

entered into that arrangement, or that patent license was granted, prior to 28

March 2007.

Nothing in this License shall be construed as excluding or limiting any implied

license or other defenses to infringement that may otherwise be available to

you under applicable patent law.

12.�No�Surrender�of�Others'�Freedom.

GNUFDL • PID_00145045 33 Free software, a new economic model?

If conditions are imposed on you (whether by court order, agreement or oth-

erwise) that contradict the conditions of this License, they do not excuse you

from the conditions of this License. If you cannot convey a covered work so

as to satisfy simultaneously your obligations under this License and any other

pertinent obligations, then as a consequence you may not convey it at all. For

example, if you agree to terms that obligate you to collect a royalty for further

conveying from those to whom you convey the Program, the only way you

could satisfy both those terms and this License would be to refrain entirely

from conveying the Program.

13.�Use�with�the�GNU�Affero�General�Public�License.

Notwithstanding any other provision of this License, you have permission to

link or combine any covered work with a work licensed under version 3 of

the GNU Affero General Public License into a single combined work, and to

convey the resulting work. The terms of this License will continue to apply to

the part which is the covered work, but the special requirements of the GNU

Affero General Public License, section 13, concerning interaction through a

network will apply to the combination as such.

14.�Revised�Versions�of�this�License.

The Free Software Foundation may publish revised and/or new versions of the

GNU General Public License from time to time. Such new versions will be

similar in spirit to the present version, but may differ in detail to address new

problems or concerns.

Each version is given a distinguishing version number. If the Program specifies

that a certain numbered version of the GNU General Public License "or any

later version" applies to it, you have the option of following the terms and

conditions either of that numbered version or of any later version published

by the Free Software Foundation. If the Program does not specify a version

number of the GNU General Public License, you may choose any version ever

published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the

GNU General Public License can be used, that proxy's public statement of

acceptance of a version permanently authorizes you to choose that version

for the Program.

Later license versions may give you additional or different permissions. How-

ever, no additional obligations are imposed on any author or copyright holder

as a result of your choosing to follow a later version.

15.�Disclaimer�of�Warranty.

GNUFDL • PID_00145045 34 Free software, a new economic model?

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-

TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING

THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-

GRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE

ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM

IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME

THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16.�Limitation�of�Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO

MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LI-

ABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCI-

DENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-

ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS

OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED

BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE

WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17.�Interpretation�of�Sections�15�and�16.

If the disclaimer of warranty and limitation of liability provided above cannot

be given local legal effect according to their terms, reviewing courts shall apply

local law that most closely approximates an absolute waiver of all civil liability

in connection with the Program, unless a warranty or assumption of liability

accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How�to�Apply�These�Terms�to�Your�New�Programs

If you develop a new program, and you want it to be of the greatest possible

use to the public, the best way to achieve this is to make it free software which

everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach

them to the start of each source file to most effectively state the exclusion of

warranty; and each file should have at least the "copyright" line and a pointer

to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>

 Copyright (C) <year> <name of author>

GNUFDL • PID_00145045 35 Free software, a new economic model?

 This program is free software: you can redistribute it and/or modify

 it under the terms of the GNU General Public License as published by

 the Free Software Foundation, either version 3 of the License, or

 (at your option) any later version.

 This program is distributed in the hope that it will be useful,

 but WITHOUT ANY WARRANTY; without even the implied warranty of

 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License

 along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like

this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>

 This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.

 This is free software, and you are welcome to redistribute it

 under certain conditions; type 'show c' for details.

The hypothetical commands 'show w' and 'show c' should show the appropri-

ate parts of the General Public License. Of course, your program's commands

might be different; for a GUI interface, you would use an "about box".

You should also get your employer (if you work as a programmer) or school,

if any, to sign a "copyright disclaimer" for the program, if necessary. For more

information on this, and how to apply and follow the GNU GPL, see <http:/

/www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program

into proprietary programs. If your program is a subroutine library, you may

consider it more useful to permit linking proprietary applications with the

library. If this is what you want to do, use the GNU Lesser General Public Li-

cense instead of this License. But first, please read <http://www.gnu.org/phi-

losophy/why-not-lgpl.html>.

The course book its focused on the
study of Free Software in relation
with the private sector and related
economic aspects. We analyse the
software industry from an economic
perspective: how it was affected by
software licensed under free
conditions and what is its potential
for the future. On the other hand,
we study how to use Free Software
in the private sector, from a
development view but also in
implementation and migration.

>

With support from the

